Answer
Verified
460.8k+ views
Hint: In this question assume equilateral triangle ABC and draw an altitude from point A on BC such that it bisects BC at D and also $\angle A$, using this information to approach the solution of the question.
Complete step-by-step solution:
Let’s take an equilateral triangle ABC as shown in the figure above
So, for an equilateral triangle all sides are equal hence AB = BC = CA = p meters and since it is an equilateral triangle hence $\angle A = \angle B = \angle C = {60^\circ }$
Now let’s draw an altitude from point A on BC such that it bisects BC at D and also bisects angle A.
Now we get two right angles $\Delta $ that is $\Delta ACD$ and $\Delta ADB$such that $\angle CAD = \angle DAB = {30^\circ }$.
Clearly, $DB = \dfrac{p}{2}$ as the altitude from point A to BC bisects it in two equal halves.
Now as Ab is the hypotenuse and it is p meters and DB is $\dfrac{p}{2}$ meters
So, we can say that $DB = \dfrac{1}{2}AB$
Hence the side opposite to the angles having measure 30 degree is half the length of hypotenuse.
Note: Whenever we come across such problem statements we simply need to think of equilateral triangles as they have the property that the measure of the angle in them is 60 degrees. Moreover, stretching a basic altitude which bisects the side on which it is drawn always helps in simplification.
Complete step-by-step solution:
Let’s take an equilateral triangle ABC as shown in the figure above
So, for an equilateral triangle all sides are equal hence AB = BC = CA = p meters and since it is an equilateral triangle hence $\angle A = \angle B = \angle C = {60^\circ }$
Now let’s draw an altitude from point A on BC such that it bisects BC at D and also bisects angle A.
Now we get two right angles $\Delta $ that is $\Delta ACD$ and $\Delta ADB$such that $\angle CAD = \angle DAB = {30^\circ }$.
Clearly, $DB = \dfrac{p}{2}$ as the altitude from point A to BC bisects it in two equal halves.
Now as Ab is the hypotenuse and it is p meters and DB is $\dfrac{p}{2}$ meters
So, we can say that $DB = \dfrac{1}{2}AB$
Hence the side opposite to the angles having measure 30 degree is half the length of hypotenuse.
Note: Whenever we come across such problem statements we simply need to think of equilateral triangles as they have the property that the measure of the angle in them is 60 degrees. Moreover, stretching a basic altitude which bisects the side on which it is drawn always helps in simplification.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE