Answer
Verified
429.3k+ views
Hint:The above question is based on the concept of geometric progression or arithmetic progression. The main approach towards solving the series is to first identify whether the sequence is arithmetic and geometric progression according to the pattern of the sequence and finding out the 21 st term according to the formula.
Complete step by step solution:
The question given has a series so we need to identify whether the series is in arithmetic progression or geometric progression. Since the difference is constant between the terms therefore the series is in arithmetic progression.
Arithmetic Progression is basically a sequence of numbers in which the difference of the consecutive numbers is a constant value.
In the above given series 3,9, 15,.….
Here the common difference is
9-3=6
15-9=6
Therefore, the common difference is 6.
So now we have to find the \[{21^{st}}\]term
So it can be written generally as to find the \[{n^{th}}\]term we have the formula
\[{a_n} = a + \left( {n - 1} \right) \times d\]
Where a is the first term in the series.
d is the common difference
n is the number of terms in the series
\[{a_n}\] is the nth term.
So since the series is in AP here a=3 and d=6,by substituting these values we get,
\[{a_{21}} = 3 + \left( {21 - 1} \right) \times 6 = 123\]
Hence the 21 st term is 123.
Note: An important thing to note is that in arithmetic progression the common difference cannot be multiplied with each term because if the common difference is in multiplication then it becomes geometric progression and for AP the common difference is always added.
Complete step by step solution:
The question given has a series so we need to identify whether the series is in arithmetic progression or geometric progression. Since the difference is constant between the terms therefore the series is in arithmetic progression.
Arithmetic Progression is basically a sequence of numbers in which the difference of the consecutive numbers is a constant value.
In the above given series 3,9, 15,.….
Here the common difference is
9-3=6
15-9=6
Therefore, the common difference is 6.
So now we have to find the \[{21^{st}}\]term
So it can be written generally as to find the \[{n^{th}}\]term we have the formula
\[{a_n} = a + \left( {n - 1} \right) \times d\]
Where a is the first term in the series.
d is the common difference
n is the number of terms in the series
\[{a_n}\] is the nth term.
So since the series is in AP here a=3 and d=6,by substituting these values we get,
\[{a_{21}} = 3 + \left( {21 - 1} \right) \times 6 = 123\]
Hence the 21 st term is 123.
Note: An important thing to note is that in arithmetic progression the common difference cannot be multiplied with each term because if the common difference is in multiplication then it becomes geometric progression and for AP the common difference is always added.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers