
In triangle ABC, right angled at B, $15\sin A=12$. Find the other five trigonometric ratios of the angle A. also find the six ratios of the angle C.
Answer
607.8k+ views
Hint:Divide both sides of the given equation by 15. Assume that in the obtained function: $\sin A=\dfrac{12}{15}$. 12 is the length of perpendicular and 15 is the length of hypotenuse of the right angle triangle. Use Pythagoras theorem given by: $\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}$, to determine the length of the base of the right angle triangle. Now, find $\cos A$ by taking the ratio of base and hypotenuse. To find $\tan A$ take the ratio of $\sin A$ and $\cos A$. Take the reciprocal of $\cos A$, $\sin A$ and $\tan A$ to find the value of $\sec A$, $\cos ecA$ and $\cot A$ respectively. Use the complementary angle formula: $\sin \left( {{90}^{\circ }}-A \right)=\cos C$, because $A+C={{90}^{\circ }}$. Similarly apply it for cosine and tangent of angle A to determine the ratios for C.
Complete step-by-step answer:
We have been provided with the trigonometric ratio relation: $15\sin A=12$. Dividing both sides by 15, we get, $\sin A=\dfrac{12}{15}$.
We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore, on comparing it with the above provided ratio, we have, 12 as the length of perpendicular and 15 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\
& \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{{{15}^{\text{2}}}-{{12}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{225-144} \\
& \Rightarrow \text{base}=\sqrt{169} \\
& \Rightarrow \text{base}=13 \\
\end{align}\]
We know that, $\cos A=\dfrac{\text{Base}}{\text{Hypotenuse}}$
\[\Rightarrow \cos A=\dfrac{13}{15}\]
Also, $\tan A=\dfrac{\text{Perpendicular}}{\text{Base}}$
$\Rightarrow \tan A=\dfrac{8}{15}$
Now, take the reciprocal of $\cos A$, $\sin A$ and $\tan A$ to find the value of $\sec A$, $\cos ecA$ and $\cot A$ respectively.
$\begin{align}
& \sec A=\dfrac{1}{\cos A} \\
& \Rightarrow \sec A=\dfrac{15}{13} \\
\end{align}$
$\begin{align}
& \cos ecA=\dfrac{1}{\sin A} \\
& \Rightarrow \cos ecA=\dfrac{15}{12} \\
\end{align}$
$\begin{align}
& \cot A=\dfrac{1}{\tan A} \\
& \Rightarrow \cot A=\dfrac{15}{8} \\
\end{align}$
Now, we have been given that angle B is 90 degrees. Therefore, the sum of angle A and angle C must be 90 degrees. Hence, angle A and angle C are complementary angles. So,
$\begin{align}
& A+C={{90}^{\circ }} \\
& \Rightarrow C={{90}^{\circ }}-A \\
\end{align}$
Taking sine function both sides, we get,
$\sin C=\sin \left( {{90}^{\circ }}-A \right)$
Using the identity: $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $, we get,
$\begin{align}
& \sin C=\cos A \\
& \Rightarrow \sin C=\dfrac{13}{15} \\
\end{align}$
Similarly,
$\begin{align}
& \cos C=\cos \left( {{90}^{\circ }}-A \right) \\
& \Rightarrow \cos C=\sin A \\
& \Rightarrow \cos C=\dfrac{12}{15} \\
\end{align}$
$\begin{align}
& \tan C=\dfrac{\sin C}{\cos C} \\
& \Rightarrow \tan C=\dfrac{\dfrac{13}{15}}{\dfrac{12}{15}} \\
& \Rightarrow \tan C=\dfrac{13}{12} \\
\end{align}$
Now, take the reciprocal of $\cos C$, $\sin C$ and $\tan C$ to find the value of $\sec C$,\[\] $\cos ecC$ and $\cot C$ respectively.
$\begin{align}
& \sec C=\dfrac{1}{\cos C} \\
& \Rightarrow \sec C=\dfrac{15}{12} \\
\end{align}$
$\begin{align}
& \cos ecC=\dfrac{1}{\sin C} \\
& \Rightarrow \cos ecC=\dfrac{15}{13} \\
\end{align}$
$\begin{align}
& \cot C=\dfrac{1}{\tan C} \\
& \Rightarrow \cot A=\dfrac{12}{13} \\
\end{align}$
Note: Here, we have used Pythagoras theorem to determine the base of the triangle to find other trigonometric ratios. One may note that, $\sec A$ is the ratio of length of hypotenuse and base, $\cos ecA$ is the ratio of length of perpendicular and base, and $\cot A$ is the ratio of length of base and hypotenuse. So, these ratios can also be found without taking the reciprocals.
Complete step-by-step answer:
We have been provided with the trigonometric ratio relation: $15\sin A=12$. Dividing both sides by 15, we get, $\sin A=\dfrac{12}{15}$.
We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore, on comparing it with the above provided ratio, we have, 12 as the length of perpendicular and 15 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\
& \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{{{15}^{\text{2}}}-{{12}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{225-144} \\
& \Rightarrow \text{base}=\sqrt{169} \\
& \Rightarrow \text{base}=13 \\
\end{align}\]
We know that, $\cos A=\dfrac{\text{Base}}{\text{Hypotenuse}}$
\[\Rightarrow \cos A=\dfrac{13}{15}\]
Also, $\tan A=\dfrac{\text{Perpendicular}}{\text{Base}}$
$\Rightarrow \tan A=\dfrac{8}{15}$
Now, take the reciprocal of $\cos A$, $\sin A$ and $\tan A$ to find the value of $\sec A$, $\cos ecA$ and $\cot A$ respectively.
$\begin{align}
& \sec A=\dfrac{1}{\cos A} \\
& \Rightarrow \sec A=\dfrac{15}{13} \\
\end{align}$
$\begin{align}
& \cos ecA=\dfrac{1}{\sin A} \\
& \Rightarrow \cos ecA=\dfrac{15}{12} \\
\end{align}$
$\begin{align}
& \cot A=\dfrac{1}{\tan A} \\
& \Rightarrow \cot A=\dfrac{15}{8} \\
\end{align}$
Now, we have been given that angle B is 90 degrees. Therefore, the sum of angle A and angle C must be 90 degrees. Hence, angle A and angle C are complementary angles. So,
$\begin{align}
& A+C={{90}^{\circ }} \\
& \Rightarrow C={{90}^{\circ }}-A \\
\end{align}$
Taking sine function both sides, we get,
$\sin C=\sin \left( {{90}^{\circ }}-A \right)$
Using the identity: $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $, we get,
$\begin{align}
& \sin C=\cos A \\
& \Rightarrow \sin C=\dfrac{13}{15} \\
\end{align}$
Similarly,
$\begin{align}
& \cos C=\cos \left( {{90}^{\circ }}-A \right) \\
& \Rightarrow \cos C=\sin A \\
& \Rightarrow \cos C=\dfrac{12}{15} \\
\end{align}$
$\begin{align}
& \tan C=\dfrac{\sin C}{\cos C} \\
& \Rightarrow \tan C=\dfrac{\dfrac{13}{15}}{\dfrac{12}{15}} \\
& \Rightarrow \tan C=\dfrac{13}{12} \\
\end{align}$
Now, take the reciprocal of $\cos C$, $\sin C$ and $\tan C$ to find the value of $\sec C$,\[\] $\cos ecC$ and $\cot C$ respectively.
$\begin{align}
& \sec C=\dfrac{1}{\cos C} \\
& \Rightarrow \sec C=\dfrac{15}{12} \\
\end{align}$
$\begin{align}
& \cos ecC=\dfrac{1}{\sin C} \\
& \Rightarrow \cos ecC=\dfrac{15}{13} \\
\end{align}$
$\begin{align}
& \cot C=\dfrac{1}{\tan C} \\
& \Rightarrow \cot A=\dfrac{12}{13} \\
\end{align}$
Note: Here, we have used Pythagoras theorem to determine the base of the triangle to find other trigonometric ratios. One may note that, $\sec A$ is the ratio of length of hypotenuse and base, $\cos ecA$ is the ratio of length of perpendicular and base, and $\cot A$ is the ratio of length of base and hypotenuse. So, these ratios can also be found without taking the reciprocals.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

