
$\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\ $
$
A.\dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
B.\dfrac{3}{2}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
C.\dfrac{{ - 2}}{3}{\cos ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
D.\dfrac{3}{2}{\cos ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Answer
576.3k+ views
Hint:
The given function is indefinite since there is no limit given. The indefinite integral of a function is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
In the given function, we will try to bring all the identity in the same form, and then we will use the trigonometric identity \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] and we further reduce the function and then it is integrated.
Complete step by step solution:
Let us consider that $I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx$
The above equation can also be written by taking $\cos x$ as common from both the terms in the numerator as
$
I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{\cos x(1 - {{\cos }^2}x)}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx - - - - (i) \\
$
Now, let us consider that $u = {\cos ^{\dfrac{3}{2}}}x - - - - (ii)$
Differentiate the equation (ii) with respect to x as:
$
\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) \\
\dfrac{{du}}{{dx}} = \dfrac{3}{2}{\cos ^{\left( {\dfrac{3}{2} - 1} \right)}}\left( { - \sin x} \right) \\
du = \dfrac{{ - 3\sin x\sqrt {\cos x} }}{2}dx \\
dx = \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du - - - - (iii) \\
$
Substituting the value of ‘dx’ obtained in equation (iii) in the equation (i) we get,
$
I = \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} \times } \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du \\
= \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du - - - - (iv) \\
$
Again, substitute the values of the equation (ii) in the equation (iv) we get
$
I = \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {{\cos }^3}x}}} } \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} - - - - (v){\text{ }}\left[ {u = {{\cos }^{\dfrac{3}{2}}}x \Rightarrow {{\cos }^3}x = {u^2}} \right] \\
$
Using the definite integral formula \[\int {\dfrac{1}{{\sqrt {1 - {a^2}} }} = {{\sin }^{ - 1}}a} \] in the equation (v) we get
$
I = \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} \\
= \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c - - - - (vi) \\
$
Now, substitute the value of $ u $ from the equation (ii) we get
$
I = \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c \\
= \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Hence, $\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx = \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c$
Option A is correct.
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
The given function is indefinite since there is no limit given. The indefinite integral of a function is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
In the given function, we will try to bring all the identity in the same form, and then we will use the trigonometric identity \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] and we further reduce the function and then it is integrated.
Complete step by step solution:
Let us consider that $I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx$
The above equation can also be written by taking $\cos x$ as common from both the terms in the numerator as
$
I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{\cos x(1 - {{\cos }^2}x)}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx - - - - (i) \\
$
Now, let us consider that $u = {\cos ^{\dfrac{3}{2}}}x - - - - (ii)$
Differentiate the equation (ii) with respect to x as:
$
\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) \\
\dfrac{{du}}{{dx}} = \dfrac{3}{2}{\cos ^{\left( {\dfrac{3}{2} - 1} \right)}}\left( { - \sin x} \right) \\
du = \dfrac{{ - 3\sin x\sqrt {\cos x} }}{2}dx \\
dx = \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du - - - - (iii) \\
$
Substituting the value of ‘dx’ obtained in equation (iii) in the equation (i) we get,
$
I = \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} \times } \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du \\
= \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du - - - - (iv) \\
$
Again, substitute the values of the equation (ii) in the equation (iv) we get
$
I = \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {{\cos }^3}x}}} } \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} - - - - (v){\text{ }}\left[ {u = {{\cos }^{\dfrac{3}{2}}}x \Rightarrow {{\cos }^3}x = {u^2}} \right] \\
$
Using the definite integral formula \[\int {\dfrac{1}{{\sqrt {1 - {a^2}} }} = {{\sin }^{ - 1}}a} \] in the equation (v) we get
$
I = \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} \\
= \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c - - - - (vi) \\
$
Now, substitute the value of $ u $ from the equation (ii) we get
$
I = \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c \\
= \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Hence, $\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx = \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c$
Option A is correct.
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

