
How do you integrate $\dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}$ using partial fraction?
Answer
537.6k+ views
Hint: We know that we can convert a fraction into the sum of partial fractions if the degree of the numerator is less than the degree of the denominator. Also, we know that a non-repeated linear factor $s-a$ in the denominator, corresponds a partial fraction of the form $\dfrac{A}{s-a}.$
Complete step by step solution:
Let us consider the given fraction $\dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}.$
We are asked to integrate this fraction using a partial fraction.
We know that a fraction can be converted to the sum of partial fractions if the degree of the numerator is less than that of the denominator.
Let us consider the numerator of the given fraction $3{{x}^{3}}-5{{x}^{2}}-11x+9.$
We will add and subtract ${{x}^{2}}$ and $x$ to this polynomial to get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3{{x}^{3}}-5{{x}^{2}}+{{x}^{2}}-{{x}^{2}}+x-x-11x+9.\]
We will get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3{{x}^{3}}-6{{x}^{2}}+{{x}^{2}}-x-10x+9=3{{x}^{3}}-6{{x}^{2}}-9x+{{x}^{2}}-2x+9.\]
When we take $3x$ from the first three summands we will get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3x\left( {{x}^{2}}-2x-3 \right)+{{x}^{2}}-2x+9.\]
Let us add and subtract $3$ to get the equation as
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3x\left( {{x}^{2}}-2x-3 \right)+{{x}^{2}}-2x-3+9+3=3x\left( {{x}^{2}}-2x-3 \right)+\left( {{x}^{2}}-2x-3 \right)+12.\]
When we take the common out, we will get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=\left( 3x+1 \right)\left( {{x}^{2}}-2x-3 \right)+12.\]
Therefore, $\dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}=3x+1+\dfrac{12}{{{x}^{2}}-2x-3}.$
We know that ${{x}^{2}}-2x-3=\left( x-3 \right)\left( x+1 \right).$
We will get $\dfrac{12}{{{x}^{2}}-2x-3}=\dfrac{12}{\left( x-3 \right)\left( x+1 \right)}=\dfrac{A}{x-3}+\dfrac{B}{x+1}.$
We will obtain $12=A\left( x+1 \right)+B\left( x-3 \right)=Ax+A+Bx-3B=\left( A+B \right)x+A-3B.$
Therefore, when we compare the coefficients, we will get $A+B=0$ and $A-3B=12.$
When we solve these equations, we will get $B=-A$ and so, $A-3B=A+3A=4A=12.$
That is, $A=\dfrac{12}{4}=3$ and $B=-3.$
Therefore, the sum of partial fraction of the given fraction is
$\Rightarrow \dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}=3x+1+\dfrac{3}{x-3}-\dfrac{3}{x+1}.$
Note: To a repeated linear factor ${{\left( s-a \right)}^{r}}$ in the denominator, corresponds the sum of $r$ partial fractions of the form $\dfrac{{{A}_{1}}}{s-a}+\dfrac{{{A}_{2}}}{{{\left( s-a \right)}^{2}}}+\dfrac{{{A}_{3}}}{{{\left( s-a \right)}^{3}}}...+\dfrac{{{A}_{r}}}{{{\left( s-a \right)}^{r}}}.$ To a non-repeated quadratic factor ${{s}^{2}}+as+b$ in the denominator, corresponds a partial fraction of the form $\dfrac{As+B}{{{s}^{2}}+as+b}.$ To a repeated quadratic factor ${{\left( {{s}^{2}}+as+b \right)}^{r}}$ in the denominator, corresponds the sum of $r$ partial fractions of the form $\dfrac{{{A}_{1}}s+{{B}_{1}}}{{{s}^{2}}+as+b}+\dfrac{{{A}_{2}}s+{{B}_{2}}}{{{\left( {{s}^{2}}+as+b \right)}^{2}}}+...+\dfrac{{{A}_{r}}s+{{B}_{r}}}{{{\left( {{s}^{2}}+as+b \right)}^{r}}.}$
Complete step by step solution:
Let us consider the given fraction $\dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}.$
We are asked to integrate this fraction using a partial fraction.
We know that a fraction can be converted to the sum of partial fractions if the degree of the numerator is less than that of the denominator.
Let us consider the numerator of the given fraction $3{{x}^{3}}-5{{x}^{2}}-11x+9.$
We will add and subtract ${{x}^{2}}$ and $x$ to this polynomial to get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3{{x}^{3}}-5{{x}^{2}}+{{x}^{2}}-{{x}^{2}}+x-x-11x+9.\]
We will get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3{{x}^{3}}-6{{x}^{2}}+{{x}^{2}}-x-10x+9=3{{x}^{3}}-6{{x}^{2}}-9x+{{x}^{2}}-2x+9.\]
When we take $3x$ from the first three summands we will get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3x\left( {{x}^{2}}-2x-3 \right)+{{x}^{2}}-2x+9.\]
Let us add and subtract $3$ to get the equation as
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=3x\left( {{x}^{2}}-2x-3 \right)+{{x}^{2}}-2x-3+9+3=3x\left( {{x}^{2}}-2x-3 \right)+\left( {{x}^{2}}-2x-3 \right)+12.\]
When we take the common out, we will get
\[\Rightarrow 3{{x}^{3}}-5{{x}^{2}}-11x+9=\left( 3x+1 \right)\left( {{x}^{2}}-2x-3 \right)+12.\]
Therefore, $\dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}=3x+1+\dfrac{12}{{{x}^{2}}-2x-3}.$
We know that ${{x}^{2}}-2x-3=\left( x-3 \right)\left( x+1 \right).$
We will get $\dfrac{12}{{{x}^{2}}-2x-3}=\dfrac{12}{\left( x-3 \right)\left( x+1 \right)}=\dfrac{A}{x-3}+\dfrac{B}{x+1}.$
We will obtain $12=A\left( x+1 \right)+B\left( x-3 \right)=Ax+A+Bx-3B=\left( A+B \right)x+A-3B.$
Therefore, when we compare the coefficients, we will get $A+B=0$ and $A-3B=12.$
When we solve these equations, we will get $B=-A$ and so, $A-3B=A+3A=4A=12.$
That is, $A=\dfrac{12}{4}=3$ and $B=-3.$
Therefore, the sum of partial fraction of the given fraction is
$\Rightarrow \dfrac{3{{x}^{3}}-5{{x}^{2}}-11x+9}{{{x}^{2}}-2x-3}=3x+1+\dfrac{3}{x-3}-\dfrac{3}{x+1}.$
Note: To a repeated linear factor ${{\left( s-a \right)}^{r}}$ in the denominator, corresponds the sum of $r$ partial fractions of the form $\dfrac{{{A}_{1}}}{s-a}+\dfrac{{{A}_{2}}}{{{\left( s-a \right)}^{2}}}+\dfrac{{{A}_{3}}}{{{\left( s-a \right)}^{3}}}...+\dfrac{{{A}_{r}}}{{{\left( s-a \right)}^{r}}}.$ To a non-repeated quadratic factor ${{s}^{2}}+as+b$ in the denominator, corresponds a partial fraction of the form $\dfrac{As+B}{{{s}^{2}}+as+b}.$ To a repeated quadratic factor ${{\left( {{s}^{2}}+as+b \right)}^{r}}$ in the denominator, corresponds the sum of $r$ partial fractions of the form $\dfrac{{{A}_{1}}s+{{B}_{1}}}{{{s}^{2}}+as+b}+\dfrac{{{A}_{2}}s+{{B}_{2}}}{{{\left( {{s}^{2}}+as+b \right)}^{2}}}+...+\dfrac{{{A}_{r}}s+{{B}_{r}}}{{{\left( {{s}^{2}}+as+b \right)}^{r}}.}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

