Answer
Verified
469.2k+ views
Hint: From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\]. Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I. Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\] on R.H.S. We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]. By using \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\], we should write the denominator in the form of \[\cos A\cos B-\sin A\sin B\]. We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]. Now by using this formula, we should write the denominator in the form of \[\cos \theta \]. We know that \[\sec \theta =\dfrac{1}{\cos \theta }\]. We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\]. By using this formula, we can find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I.
\[I=\int{\dfrac{dx}{\cos x-\sin x}}\]
Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\].
\[\begin{align}
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\left( \cos x-\sin x \right)}} \\
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}} \\
\end{align}\]
We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x}}\]
We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\left( x+\dfrac{\pi }{4} \right)}}\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\sec \left( x+\dfrac{\pi }{4} \right)dx}.......(1)\]
Let us assume \[y=x+\dfrac{\pi }{4}.....(2)\].
Now let us differentiate equation (2) with respect to x on both sides.
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( x+\dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=1 \\
\end{align}\]
Now we will apply cross multiplication.
\[\Rightarrow dy=dx......(3)\]
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\operatorname{secy}dy}.......(4)\]
We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \operatorname{tany}+\operatorname{secy} \right| \right)+C..........(5)\]
Now let us substitute equation (2) in equation (5), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C.......(6)\]
From equation (6), we can say that
\[\Rightarrow \int{\dfrac{dx}{\cos x-\sin x}}=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]
Note: Students may assume a misconception that \[\int{\sec \theta }=\ln \left| \tan \theta -\sec \theta \right|\]. If this formula is applied, then we get the value of I is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. Then, we get the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. But we know that the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. So, this misconception should be avoided to get an accurate result.
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I.
\[I=\int{\dfrac{dx}{\cos x-\sin x}}\]
Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\].
\[\begin{align}
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\left( \cos x-\sin x \right)}} \\
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}} \\
\end{align}\]
We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x}}\]
We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\left( x+\dfrac{\pi }{4} \right)}}\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\sec \left( x+\dfrac{\pi }{4} \right)dx}.......(1)\]
Let us assume \[y=x+\dfrac{\pi }{4}.....(2)\].
Now let us differentiate equation (2) with respect to x on both sides.
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( x+\dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=1 \\
\end{align}\]
Now we will apply cross multiplication.
\[\Rightarrow dy=dx......(3)\]
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\operatorname{secy}dy}.......(4)\]
We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \operatorname{tany}+\operatorname{secy} \right| \right)+C..........(5)\]
Now let us substitute equation (2) in equation (5), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C.......(6)\]
From equation (6), we can say that
\[\Rightarrow \int{\dfrac{dx}{\cos x-\sin x}}=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]
Note: Students may assume a misconception that \[\int{\sec \theta }=\ln \left| \tan \theta -\sec \theta \right|\]. If this formula is applied, then we get the value of I is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. Then, we get the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. But we know that the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. So, this misconception should be avoided to get an accurate result.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE