Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Integrate the following trigonometric term:
cos3xcos4x.dx

Answer
VerifiedVerified
528k+ views
like imagedislike image
Hint- in order to solve such types of integral first try to simplify the terms with the help of some common trigonometric identities and then proceed with the integration part.

Complete step-by-step solution -
To find out cos3xcos4x.dx
By multiplying the given integral by 22 , we won’t alter the integral but will bring it to satisfy some common trigonometric identity
22×cos3xcos4x.dx=122cos3xcos4x.dx
Now, first solving the internal part of the integral.
As we know the trigonometric identity
2cosAcosB=cos(A+B)+cos(AB)
Using the above formula in the integral we get
122cos3xcos4x.dx12[cos(4x+3x)+cos(4x3x)]dx12[cos7x+cosx]dx12cos7x.dx+12cosx.dx
Now as we know the formula of integral for cosine which is
cosθ.dθ=sinθ
So using the same formula, we get the value of the integral which is:
12cos7x.dx+12cosx.dx=12sin7x7+12sinx=sin7x14+sinx2
Hence, the value of the given integral is sin7x14+sinx2 .

Note- In order to solve such questions related to integral of complex trigonometric identity, always try to simplify the terms in the integral part before moving to the integral part of the solution. The trigonometric identity mentioned along with the solution which helps in simplification of terms is very useful and must be remembered. Also remember the formulas for integration of some general terms.