Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Integrate the function 1x(logx)m,x>0,m1

Answer
VerifiedVerified
530.7k+ views
like imagedislike image
Hint:Substitute t=logx, differentiate them and put the values in the integral. Simplify the integral given by the basic integral formula. Replace t with logx in the simplified integral.

Complete step-by-step answer:
Let’s consider I=1x(logx)mdx(1)
Let’s assume that logx=t.
x=log1t=etx=et
Differentiate logx=t with respect to x.
logx=t1xdx=dt
Now substitute these values in equation (1).
I=1x(logx)mdx=dttmI=dttm=tmdt(2)
Now integrate equation (2).
We know x1dx=x1+11+1=x22+c where c is a constant of integration.
Similarly, I=tm=(tm+1m+1)+c
I=t1m1m+c
Now replace t with logx, we get
I=(logx)1m1m+cI=(logx)1×(logx)m(1m)+cI=11m×logx(logx)m+c

Note: The integration can be solved by basic integral formula x1dx=x1+11+1=x22+c
Similarly 1.dx=x+c;a.dx=ax+c etc.