
Integration of $2\sin x$?
Answer
469.8k+ views
Hint: Integration is a method of adding or summing up the parts to find the whole. It is a reverse process of differentiation, where we reduce the functions in smaller parts. Differentiation is the process of finding the derivative and integration is the process of finding the antiderivative of a function. So, these processes are inverse of each other. Here, we have to find the integration of the function $2\sin x$.
Complete step-by-step answer:
Here, we have to integrate the function $2\sin x$. So,
$ \Rightarrow \int {2\sin x\,dx} $
Extracting $2$ from the integration as it is a constant. We get,
$ \Rightarrow 2\int {\sin x\,dx} $
We know that the integration of the $\sin x$ is $ - \cos x$.
Therefore,
$ \Rightarrow 2\int {\sin x\,dx} = - 2\cos x + C$
Where $C$ is an integration constant.
Hence the integration of the function $2\sin x$ is $ - 2\cos x + C$.
Note: The integration is the process of finding the antiderivative of a function. It is a similar way to add the slices to make it whole. The integration is the inverse process of differentiation. Integration is also called the anti-differentiation. The integration is used to find the volume, area and the central values of many things. Integration can be defined as $\int {F(x)dx = f(x) + C} $ where the function $F(x)$ is called anti=derivative or integral or primitive of the given function $f(x)$ and $C$ is known as the arbitrary constant or constant of integration.
Complete step-by-step answer:
Here, we have to integrate the function $2\sin x$. So,
$ \Rightarrow \int {2\sin x\,dx} $
Extracting $2$ from the integration as it is a constant. We get,
$ \Rightarrow 2\int {\sin x\,dx} $
We know that the integration of the $\sin x$ is $ - \cos x$.
Therefore,
$ \Rightarrow 2\int {\sin x\,dx} = - 2\cos x + C$
Where $C$ is an integration constant.
Hence the integration of the function $2\sin x$ is $ - 2\cos x + C$.
Note: The integration is the process of finding the antiderivative of a function. It is a similar way to add the slices to make it whole. The integration is the inverse process of differentiation. Integration is also called the anti-differentiation. The integration is used to find the volume, area and the central values of many things. Integration can be defined as $\int {F(x)dx = f(x) + C} $ where the function $F(x)$ is called anti=derivative or integral or primitive of the given function $f(x)$ and $C$ is known as the arbitrary constant or constant of integration.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

