Answer
Verified
456.9k+ views
Hint: Path difference is the measure of the path traveled by two waves. It is measured in terms of wavelength \[\lambda \]. If the measure of path difference between two waves is the even integer multiple of \[\lambda \] means, it is called constructive interference. And in turn, if the measure of path difference is the odd multiple integrals of \[\lambda \] means, it is called destructive interference.
Formula used:
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
Where,
\[I\]- The intensity at any phase difference \[\phi \]
\[{I_o}\]- Intensity of the light
Complete step by step answer:
(i) Intensity of the central fringe on the screen is given as \[0.1\dfrac{W}{{{m^2}}}\]. The intensity of the fringe can be found by the formula,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\] --------- (1)
(ii) To find the value of intensity of point at particular path difference, we have to find the intensity of the light \[{I_o}\] and the phase difference \[\phi \]
(iii) Therefore, in case of central fringe, \[I = {I_C}\] and \[\phi = 0\] applying these values in the equation (1)
\[ \Rightarrow {I_C} = 4{I_o}\] \[\left[ {\cos 0 = 1} \right]\]
\[ \Rightarrow {I_o} = \dfrac{{0.1}}{4}\] ---------- (2)
(iv)Finding the phase difference from the path difference by the relation \[\phi = \dfrac{{2\pi }}{\lambda }\Delta x\] Where \[\Delta x\] is the path difference it given here as \[\dfrac{\lambda }{3}\]. Therefore,
\[ \Rightarrow \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3}\]
\[ \Rightarrow \phi = \dfrac{{2\pi }}{3}\]
(v) Now we found all the required values. Thus the value of the intensity of the point having path difference \[\dfrac{\lambda }{3}\] is by the equation (1) is,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
\[ \Rightarrow I = 4 \times \dfrac{{0.1}}{4} \times {\cos ^2}\left( {\dfrac{{\tfrac{{2\pi }}{3}}}{2}} \right)\]
\[ \Rightarrow I = 0.1 \times \dfrac{1}{4}\]
\[ \Rightarrow I = 0.025W{m^{ - 2}}\]
\[\therefore I = 2.5mW{m^{ - 2}}\]. Hence the correct option is A.
Note:
The phase difference between the waves can be found by finding the difference between the two-point at a wave. It is the measure of deviation between the two waves. The phase difference between the two waves will be the same if the two waves are moving together. This denotes that the crests of the two waves meet and the troughs too.
Formula used:
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
Where,
\[I\]- The intensity at any phase difference \[\phi \]
\[{I_o}\]- Intensity of the light
Complete step by step answer:
(i) Intensity of the central fringe on the screen is given as \[0.1\dfrac{W}{{{m^2}}}\]. The intensity of the fringe can be found by the formula,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\] --------- (1)
(ii) To find the value of intensity of point at particular path difference, we have to find the intensity of the light \[{I_o}\] and the phase difference \[\phi \]
(iii) Therefore, in case of central fringe, \[I = {I_C}\] and \[\phi = 0\] applying these values in the equation (1)
\[ \Rightarrow {I_C} = 4{I_o}\] \[\left[ {\cos 0 = 1} \right]\]
\[ \Rightarrow {I_o} = \dfrac{{0.1}}{4}\] ---------- (2)
(iv)Finding the phase difference from the path difference by the relation \[\phi = \dfrac{{2\pi }}{\lambda }\Delta x\] Where \[\Delta x\] is the path difference it given here as \[\dfrac{\lambda }{3}\]. Therefore,
\[ \Rightarrow \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3}\]
\[ \Rightarrow \phi = \dfrac{{2\pi }}{3}\]
(v) Now we found all the required values. Thus the value of the intensity of the point having path difference \[\dfrac{\lambda }{3}\] is by the equation (1) is,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
\[ \Rightarrow I = 4 \times \dfrac{{0.1}}{4} \times {\cos ^2}\left( {\dfrac{{\tfrac{{2\pi }}{3}}}{2}} \right)\]
\[ \Rightarrow I = 0.1 \times \dfrac{1}{4}\]
\[ \Rightarrow I = 0.025W{m^{ - 2}}\]
\[\therefore I = 2.5mW{m^{ - 2}}\]. Hence the correct option is A.
Note:
The phase difference between the waves can be found by finding the difference between the two-point at a wave. It is the measure of deviation between the two waves. The phase difference between the two waves will be the same if the two waves are moving together. This denotes that the crests of the two waves meet and the troughs too.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE