Answer
Verified
392.7k+ views
Hint: We first need to understand the meaning of the word ‘discontinuity’. In mathematical terms, a discontinuity is any point in the domain of the function where the function is not defined or any point where the left-hand limit and right-hand limit of the function are not equal. We need to be aware about the types of discontinuity in mathematics.
Complete step by step solution:
In this question we will find the limits of the given function. Now by limits we mean that we will find the left-hand limit and right-hand limit of the function and then we will compare the limits. We say that it is a jump discontinuity in maths if we see that after finding the left-hand limit and right-hand limit of the function that they are not equal. When this case appears then we say that it is a jump discontinuity.
We can see jump discontinuity from the graph of the function given below:
\[f\left(x\right) = \begin{cases}
x+1 & x> 0 \\
-x & x\leq 0
\end{cases}\]
The graph of the function is as follows, and the jump discontinuity can clearly be seen here:
Now we can see from the graph clearly that there is a jump in the limit of the function from the left side and the right side. The jump from 0 to 1 can be clearly seen and hence we can conclude what is the jump discontinuity.
Note: Here in the function, the discontinuity appears when the left hand limit and right hand limits are not equal, other types of discontinuity may occur when the function is not defined at that point, in that case do not mix the two definitions.
Complete step by step solution:
In this question we will find the limits of the given function. Now by limits we mean that we will find the left-hand limit and right-hand limit of the function and then we will compare the limits. We say that it is a jump discontinuity in maths if we see that after finding the left-hand limit and right-hand limit of the function that they are not equal. When this case appears then we say that it is a jump discontinuity.
We can see jump discontinuity from the graph of the function given below:
\[f\left(x\right) = \begin{cases}
x+1 & x> 0 \\
-x & x\leq 0
\end{cases}\]
The graph of the function is as follows, and the jump discontinuity can clearly be seen here:
Now we can see from the graph clearly that there is a jump in the limit of the function from the left side and the right side. The jump from 0 to 1 can be clearly seen and hence we can conclude what is the jump discontinuity.
Note: Here in the function, the discontinuity appears when the left hand limit and right hand limits are not equal, other types of discontinuity may occur when the function is not defined at that point, in that case do not mix the two definitions.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is pollution? How many types of pollution? Define it
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE