Answer
Verified
496.8k+ views
Hint: In this question first of all we have to know the basics of algebra like in this question we should know that roots of equations are equal to zero if put them in variables by this concept we will able to solve half the question then we should also know the elimination method of linear equations in two variables also we should know about the relation of zeros in cubic polynomial by these simple things you should be able to find the solution.
Complete step-by-step answer:
To find ‘m’ and ‘n’, we will put the values of zeros of the equation in the place of ‘x’ and then equate the equation to zero.
$ \Rightarrow $ 2 and 3 are the zeros of the given equation $2{x^2} + mx - 13x + n$
Case 1
$
f(2) = 2{(2)^3} + m{(2)^2} - 13(2) + n = 0 \\
\Rightarrow 16 + 4m - 26 + n = 0 \\
\Rightarrow 4m + n = 10{\text{ }}......\left( 1 \right) \\
$
Case 2
$
f\left( 3 \right) = 2{(3)^3} + m{\left( 3 \right)^2} - 13\left( 3 \right) + n = 0 \\
\Rightarrow 54 + 9m - 39 + n = 0 \\
\Rightarrow 9m + n = - 15{\text{ }}.......{\text{(2)}} \\
$
Using (1) and (2) we get
$
4m + n = \;{\text{ }}10 \\
9m + n = - 15 \\
( - )( - ){\text{ ( + )}} \\
\\
$
$ - 5m{\text{ }} = {\text{ }}25{\text{ }}$
$
m = \dfrac{{25}}{{ - 5}} \\
m = - 5 \\
$
Put value of m in (1)
$
\Rightarrow 4m + n = 10 \\
\Rightarrow 4( - 5) + n = 10 \\
\Rightarrow - 20 + n = 10 \\
\Rightarrow n = 30 \\
$
Therefore, m=-5 and n=30
Now we know that $\alpha + \beta + \gamma = - \dfrac{b}{a}$ (sum of cubic roots)
$
2 + 3 + p = \dfrac{5}{2} \\
5 + p = \dfrac{5}{2} \\
p = \dfrac{5}{2} - \dfrac{5}{1} \\
p = \dfrac{{5 - 10}}{2} \\
p = \dfrac{{ - 5}}{2} \\
$
So, third root= $\dfrac{{ - 5}}{2}$
To determine m+n+2(p)
$
= - 5 + 30 + 2\left( { - \dfrac{5}{2}} \right) \\
= 25 - 5 \\
= 20 \\
$
Note: In this question we should know the basics of algebra like values of roots of equations if put instead of variables gives us 0. Also we must know about the elimination method of linear equations in two variables which will help us to find m and n. Then we must also be aware of the relation between the zeros of a cubic polynomial. Last but not the least we must know about the determination of the values and what are the values for cubic relations of equations. By these simple tips the solution becomes quite easier to calculate.
Complete step-by-step answer:
To find ‘m’ and ‘n’, we will put the values of zeros of the equation in the place of ‘x’ and then equate the equation to zero.
$ \Rightarrow $ 2 and 3 are the zeros of the given equation $2{x^2} + mx - 13x + n$
Case 1
$
f(2) = 2{(2)^3} + m{(2)^2} - 13(2) + n = 0 \\
\Rightarrow 16 + 4m - 26 + n = 0 \\
\Rightarrow 4m + n = 10{\text{ }}......\left( 1 \right) \\
$
Case 2
$
f\left( 3 \right) = 2{(3)^3} + m{\left( 3 \right)^2} - 13\left( 3 \right) + n = 0 \\
\Rightarrow 54 + 9m - 39 + n = 0 \\
\Rightarrow 9m + n = - 15{\text{ }}.......{\text{(2)}} \\
$
Using (1) and (2) we get
$
4m + n = \;{\text{ }}10 \\
9m + n = - 15 \\
( - )( - ){\text{ ( + )}} \\
\\
$
$ - 5m{\text{ }} = {\text{ }}25{\text{ }}$
$
m = \dfrac{{25}}{{ - 5}} \\
m = - 5 \\
$
Put value of m in (1)
$
\Rightarrow 4m + n = 10 \\
\Rightarrow 4( - 5) + n = 10 \\
\Rightarrow - 20 + n = 10 \\
\Rightarrow n = 30 \\
$
Therefore, m=-5 and n=30
Now we know that $\alpha + \beta + \gamma = - \dfrac{b}{a}$ (sum of cubic roots)
$
2 + 3 + p = \dfrac{5}{2} \\
5 + p = \dfrac{5}{2} \\
p = \dfrac{5}{2} - \dfrac{5}{1} \\
p = \dfrac{{5 - 10}}{2} \\
p = \dfrac{{ - 5}}{2} \\
$
So, third root= $\dfrac{{ - 5}}{2}$
To determine m+n+2(p)
$
= - 5 + 30 + 2\left( { - \dfrac{5}{2}} \right) \\
= 25 - 5 \\
= 20 \\
$
Note: In this question we should know the basics of algebra like values of roots of equations if put instead of variables gives us 0. Also we must know about the elimination method of linear equations in two variables which will help us to find m and n. Then we must also be aware of the relation between the zeros of a cubic polynomial. Last but not the least we must know about the determination of the values and what are the values for cubic relations of equations. By these simple tips the solution becomes quite easier to calculate.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE