Answer
Verified
451.2k+ views
Hint: Take 2 points on parabola as $\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $\left( at_{2}^{2},2a{{t}_{2}} \right)$ . use basic formula and find the length of PQ and take length of focal chord PQ as c. Now, find the equation of line PQ. Substitute the value you get in the expression of length of focal chord ‘c’ and get the value of c.
Complete step-by-step answer:
We have been given the equation of parabola as ${{y}^{2}}=4ax$ . We need to find the focal chord of the parabola at a distance p from the vertex. Let us take 2 points on the parabola as P and Q. Now let us consider the coordinates as $P\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $Q\left( at_{2}^{2},2a{{t}_{2}} \right)$ . $O\left( a,o \right)$ is the focus of the parabola.
We know the formula for finding slope of line as, $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .
Here the slope of OP is equal to the slope of OQ.
i.e. ${{t}_{1}}{{t}_{2}}=-1$ i.e. Slope of OP = Slope of OQ
$\Rightarrow {{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$ .
Hence in the coordinate of Q put ${{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$
$\therefore Q\left( a{{\left( -\dfrac{1}{{{t}_{1}}} \right)}^{2}},2a\left( -\dfrac{1}{{{t}_{1}}} \right) \right)=Q\left( \dfrac{a}{t_{1}^{2}},-\dfrac{2a}{{{t}_{1}}} \right)$ respectively.
Let’s assume ${{t}_{1}}=\dfrac{-1}{{{t}_{2}}}=t$.
Let the length of the focal chord be taken a c.
The distance of PQ can be found by using the formula, distance$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Put $\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right)$, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},-\dfrac{2a}{t} \right)\].
Distance PQ\[=\sqrt{{{\left( a{{t}^{2}}-\dfrac{a}{{{t}^{2}}} \right)}^{2}}+{{\left( 2at+\dfrac{2a}{t} \right)}^{2}}}=c\]
Simplifying we get \[\left| \overline{PQ} \right|=\sqrt{{{a}^{2}}{{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}+{{\left( 2a \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}}=c\Rightarrow \sqrt{{{a}^{2}}{{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}+4{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}}=c\]
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Similarly, ${{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$
$\Rightarrow \left| \overline{PQ} \right|=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left\{ {{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \right\}}=c$ [taking ${{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$common both the terms].
$\Rightarrow \sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}-2+4 \right)}=c$
$\Rightarrow \sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2 \right)}=c$ we know ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
Similarly, $\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}}=c\Rightarrow \sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{4}}}=c$
Hence it become, $a{{\left( t+\dfrac{1}{t} \right)}^{2}}=c$ ……………… (1)
Now, it is said that the length of the focal chord is at a distance of P from the vertex. Now, let us find the equation of PQ.
Equation of PQ can be found by using the formula, where
$\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right)$, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},-\dfrac{2a}{t} \right)\].
So, $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$
Where m = slope of line PQ $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at+\dfrac{2a}{t}}{a{{t}^{2}}-\dfrac{a}{{{t}^{2}}}}=\dfrac{2a\left( t+\dfrac{1}{t} \right)}{a\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}=\dfrac{2\left( t+\dfrac{1}{t} \right)}{\left( t+\dfrac{1}{t} \right)\left( t-\dfrac{1}{t} \right)}=\dfrac{2}{t-\dfrac{1}{t}}$ .
i.e. $m=\dfrac{2}{t-\dfrac{1}{t}}$
therefore, equation of line PQ is $y+\dfrac{2a}{t}=\dfrac{2}{t-\dfrac{1}{t}}\left( x-\dfrac{a}{{{t}^{2}}} \right)$
Let us simplify the expression in
$\begin{align}
& \Rightarrow y+\dfrac{2a}{t}=\dfrac{2t}{{{t}^{2}}-1}\left( x-\dfrac{a}{{{t}^{2}}} \right) \\
& \Rightarrow \left( {{t}^{2}}-1 \right)\left( {{t}^{2}}y+2at \right)=2t\left( {{t}^{2}}x-a \right) \\
& \Rightarrow \left( {{t}^{2}}-1 \right)\left( ty+2a \right)=2\left( {{t}^{2}}x-a \right) \\
& \Rightarrow t\left( {{t}^{2}}-1 \right)y-2{{t}^{2}}x+a\left( 2{{t}^{2}}-2+2 \right)=0 \\
& \Rightarrow \left( {{t}^{2}}-1 \right)y-2tx+2at=0 \\
\end{align}$
This is the equation of the focal chord.
It is said that the distance from vertex is p. we know the coordinate of vertex as $\left( 0,0 \right)$ .Thus by distance formula, here $\left( x,y \right)=0$
\[p=\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+c \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}}=\dfrac{\left| 26\times 0-\left( {{t}^{2}}-1 \right)\times 0-2at \right|}{\sqrt{{{\left( -2t \right)}^{2}}+{{\left( {{t}^{2}}-1 \right)}^{2}}}}=\dfrac{\left| -2at \right|}{\sqrt{4{{t}^{2}}+{{\left( {{t}^{2}}-1 \right)}^{2}}}}\]
Now, let us simplify this further, we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\times \left( a+b \right)$.\[\begin{align}
& p=\dfrac{\left| -2at \right|}{\sqrt{4{{t}^{2}}+{{\left( {{t}^{2}}-1 \right)}^{2}}}}=\dfrac{2at}{\sqrt{{{\left( {{t}^{2}}+1 \right)}^{2}}}}=\dfrac{2at}{{{t}^{2}}+1} \\
& \Rightarrow \dfrac{{{t}^{2}}+1}{t}=\dfrac{2a}{P} \\
& \Rightarrow t+\dfrac{1}{t}=\dfrac{2a}{P} \\
\end{align}\]
Now, substitute this in (1)
$\begin{align}
& a{{\left( t+\dfrac{1}{t} \right)}^{2}}=c\Rightarrow a{{\left( \dfrac{2a}{P} \right)}^{2}}=c \\
& \Rightarrow c=\dfrac{4{{a}^{3}}}{{{P}^{2}}} \\
\end{align}$
Length of focal chord $c=\dfrac{4{{a}^{3}}}{{{P}^{2}}}$. Hence, we got the required length as $\dfrac{4{{a}^{3}}}{{{P}^{2}}}$.
Note: The length of a focal chord of a parabola varies inversely as the square of the distance from its vertex. If we have length of segments of focal chords as ${{l}_{1}}$ and ${{l}_{2}}$ then we can find the latus rectum as $\dfrac{4{{l}_{1}}{{l}_{2}}}{{{l}_{1}}+{{l}_{2}}}$.
Complete step-by-step answer:
We have been given the equation of parabola as ${{y}^{2}}=4ax$ . We need to find the focal chord of the parabola at a distance p from the vertex. Let us take 2 points on the parabola as P and Q. Now let us consider the coordinates as $P\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $Q\left( at_{2}^{2},2a{{t}_{2}} \right)$ . $O\left( a,o \right)$ is the focus of the parabola.
We know the formula for finding slope of line as, $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ .
Here the slope of OP is equal to the slope of OQ.
i.e. ${{t}_{1}}{{t}_{2}}=-1$ i.e. Slope of OP = Slope of OQ
$\Rightarrow {{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$ .
Hence in the coordinate of Q put ${{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$
$\therefore Q\left( a{{\left( -\dfrac{1}{{{t}_{1}}} \right)}^{2}},2a\left( -\dfrac{1}{{{t}_{1}}} \right) \right)=Q\left( \dfrac{a}{t_{1}^{2}},-\dfrac{2a}{{{t}_{1}}} \right)$ respectively.
Let’s assume ${{t}_{1}}=\dfrac{-1}{{{t}_{2}}}=t$.
Let the length of the focal chord be taken a c.
The distance of PQ can be found by using the formula, distance$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Put $\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right)$, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},-\dfrac{2a}{t} \right)\].
Distance PQ\[=\sqrt{{{\left( a{{t}^{2}}-\dfrac{a}{{{t}^{2}}} \right)}^{2}}+{{\left( 2at+\dfrac{2a}{t} \right)}^{2}}}=c\]
Simplifying we get \[\left| \overline{PQ} \right|=\sqrt{{{a}^{2}}{{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}+{{\left( 2a \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}}=c\Rightarrow \sqrt{{{a}^{2}}{{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}+4{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}}=c\]
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Similarly, ${{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$
$\Rightarrow \left| \overline{PQ} \right|=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left\{ {{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \right\}}=c$ [taking ${{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$common both the terms].
$\Rightarrow \sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}-2+4 \right)}=c$
$\Rightarrow \sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2 \right)}=c$ we know ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
Similarly, $\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}}=c\Rightarrow \sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{4}}}=c$
Hence it become, $a{{\left( t+\dfrac{1}{t} \right)}^{2}}=c$ ……………… (1)
Now, it is said that the length of the focal chord is at a distance of P from the vertex. Now, let us find the equation of PQ.
Equation of PQ can be found by using the formula, where
$\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right)$, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},-\dfrac{2a}{t} \right)\].
So, $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$
Where m = slope of line PQ $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at+\dfrac{2a}{t}}{a{{t}^{2}}-\dfrac{a}{{{t}^{2}}}}=\dfrac{2a\left( t+\dfrac{1}{t} \right)}{a\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}=\dfrac{2\left( t+\dfrac{1}{t} \right)}{\left( t+\dfrac{1}{t} \right)\left( t-\dfrac{1}{t} \right)}=\dfrac{2}{t-\dfrac{1}{t}}$ .
i.e. $m=\dfrac{2}{t-\dfrac{1}{t}}$
therefore, equation of line PQ is $y+\dfrac{2a}{t}=\dfrac{2}{t-\dfrac{1}{t}}\left( x-\dfrac{a}{{{t}^{2}}} \right)$
Let us simplify the expression in
$\begin{align}
& \Rightarrow y+\dfrac{2a}{t}=\dfrac{2t}{{{t}^{2}}-1}\left( x-\dfrac{a}{{{t}^{2}}} \right) \\
& \Rightarrow \left( {{t}^{2}}-1 \right)\left( {{t}^{2}}y+2at \right)=2t\left( {{t}^{2}}x-a \right) \\
& \Rightarrow \left( {{t}^{2}}-1 \right)\left( ty+2a \right)=2\left( {{t}^{2}}x-a \right) \\
& \Rightarrow t\left( {{t}^{2}}-1 \right)y-2{{t}^{2}}x+a\left( 2{{t}^{2}}-2+2 \right)=0 \\
& \Rightarrow \left( {{t}^{2}}-1 \right)y-2tx+2at=0 \\
\end{align}$
This is the equation of the focal chord.
It is said that the distance from vertex is p. we know the coordinate of vertex as $\left( 0,0 \right)$ .Thus by distance formula, here $\left( x,y \right)=0$
\[p=\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+c \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}}=\dfrac{\left| 26\times 0-\left( {{t}^{2}}-1 \right)\times 0-2at \right|}{\sqrt{{{\left( -2t \right)}^{2}}+{{\left( {{t}^{2}}-1 \right)}^{2}}}}=\dfrac{\left| -2at \right|}{\sqrt{4{{t}^{2}}+{{\left( {{t}^{2}}-1 \right)}^{2}}}}\]
Now, let us simplify this further, we know that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\times \left( a+b \right)$.\[\begin{align}
& p=\dfrac{\left| -2at \right|}{\sqrt{4{{t}^{2}}+{{\left( {{t}^{2}}-1 \right)}^{2}}}}=\dfrac{2at}{\sqrt{{{\left( {{t}^{2}}+1 \right)}^{2}}}}=\dfrac{2at}{{{t}^{2}}+1} \\
& \Rightarrow \dfrac{{{t}^{2}}+1}{t}=\dfrac{2a}{P} \\
& \Rightarrow t+\dfrac{1}{t}=\dfrac{2a}{P} \\
\end{align}\]
Now, substitute this in (1)
$\begin{align}
& a{{\left( t+\dfrac{1}{t} \right)}^{2}}=c\Rightarrow a{{\left( \dfrac{2a}{P} \right)}^{2}}=c \\
& \Rightarrow c=\dfrac{4{{a}^{3}}}{{{P}^{2}}} \\
\end{align}$
Length of focal chord $c=\dfrac{4{{a}^{3}}}{{{P}^{2}}}$. Hence, we got the required length as $\dfrac{4{{a}^{3}}}{{{P}^{2}}}$.
Note: The length of a focal chord of a parabola varies inversely as the square of the distance from its vertex. If we have length of segments of focal chords as ${{l}_{1}}$ and ${{l}_{2}}$ then we can find the latus rectum as $\dfrac{4{{l}_{1}}{{l}_{2}}}{{{l}_{1}}+{{l}_{2}}}$.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE