How many squares are there in a chess board?
A. 1296
B.204
C. 120
D. 130
Answer
Verified
459.6k+ views
Hint: This is a trick question since one might get confused and at once calculate the total number of squares in a eight rows and eight columns chessboard by (number of rows $ \times $ number of columns= $ 8 \times 8 = 64 $ ) but these squares are only the similar squares of let say unit length.
Complete step-by-step answer:
Therefore to calculate overall squares we need to include the squares made by four unit length squares arranged together and similarly the larger squares as well.
Therefore we can observe 16 squares of two unit length although they are not the only squares with unit length 2 in this chess board there are more, similarly for three unit length and so on we can calculate the number of squares in this chess board the different sized squares are:
$
8 \times 8 \\
7 \times 7 \\
6 \times 6 \\
... \\
2 \times 2 \\
1 \times 1 \;
$
Therefore it can be enlisted as
$ {1^2} + {2^2} + {3^2} + {4^2} + {5^2} + {6^2} + {7^2} + {8^2} $ =1+4+9+25+36+49+64
We can understand it better by writing the above as sum of squares of first eight numbers which can be calculated as
$\Rightarrow \sum {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6} $
Where n is the value for the first natural numbers and the formula gives the value for the sum of squares of first n natural numbers and here the value of n is 8. Therefore substituting the values we get,
$
\Rightarrow \sum {8^2} = \dfrac{{8(8 + 1)(2 \times 8 + 1)}}{6} = \dfrac{{8(9)(16 + 1)}}{6} = \dfrac{{72 \times 17}}{6} = 12 \times 17 \\
\Rightarrow \sum {8^2} = 12 \times 17 = 204 \;
$
Hence there are 204 squares in total in a eight rows and eight columns chess board.
So, the correct answer is “204”.
Note: We must carefully note that the trend of the numbers in the above case was adding the squares of the first eight natural numbers which is the above formula was applicable. Also note that the biggest square is the one with eight squares in the row and column.
Complete step-by-step answer:
Therefore to calculate overall squares we need to include the squares made by four unit length squares arranged together and similarly the larger squares as well.
Therefore we can observe 16 squares of two unit length although they are not the only squares with unit length 2 in this chess board there are more, similarly for three unit length and so on we can calculate the number of squares in this chess board the different sized squares are:
$
8 \times 8 \\
7 \times 7 \\
6 \times 6 \\
... \\
2 \times 2 \\
1 \times 1 \;
$
Therefore it can be enlisted as
$ {1^2} + {2^2} + {3^2} + {4^2} + {5^2} + {6^2} + {7^2} + {8^2} $ =1+4+9+25+36+49+64
We can understand it better by writing the above as sum of squares of first eight numbers which can be calculated as
$\Rightarrow \sum {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6} $
Where n is the value for the first natural numbers and the formula gives the value for the sum of squares of first n natural numbers and here the value of n is 8. Therefore substituting the values we get,
$
\Rightarrow \sum {8^2} = \dfrac{{8(8 + 1)(2 \times 8 + 1)}}{6} = \dfrac{{8(9)(16 + 1)}}{6} = \dfrac{{72 \times 17}}{6} = 12 \times 17 \\
\Rightarrow \sum {8^2} = 12 \times 17 = 204 \;
$
Hence there are 204 squares in total in a eight rows and eight columns chess board.
So, the correct answer is “204”.
Note: We must carefully note that the trend of the numbers in the above case was adding the squares of the first eight natural numbers which is the above formula was applicable. Also note that the biggest square is the one with eight squares in the row and column.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE