Length of the normal chord of the parabola ${{y}^{2}}=8x$ at the point where abscissa and ordinate are equal is:
A.13
B.8
C.$10\sqrt{5}$
D.4
Answer
Verified
498k+ views
Hint: Take the focal chord as PQ. Their coordinates are of the form $\left( a{{t}^{2}},2at \right)$ . From the given equation of parabola and focal chord concept, we need to get the value of a, ${{t}_{1}}$ and ${{t}_{2}}$ . As abscissa of ordinate are equal, y=x puts that in the equation of parabola. Get value of P & Q, using distance formula. Find length or PQ.
Complete step-by-step answer:
We have been given the equation of parabola as \[{{y}^{2}}=8x\] .
First let us draw the parabola \[{{y}^{2}}=8x\]
We know the general equation of a parabola as ${{y}^{2}}=4ax$ , Now let us compare both the general equation and the given equation of parabola.
From that we get, latus rectum $4a=8$
$\begin{align}
& a=\dfrac{8}{4}=2 \\
& \text{i}\text{.e}\text{. }a=2 \\
\end{align}$
Let us take the two points on the parabola as $P\left( {{t}_{1}} \right)$ and $Q\left( {{t}_{2}} \right)$ . we know the relation ${{t}_{1}}{{t}_{2}}=-1$ .
Similarly we know that ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}$ .
It is said that the abscissa and ordinates are equal, the coordinates are equal so put y=x.
${{y}^{2}}=8x$
So, ${{x}^{2}}=8x\Rightarrow {{x}^{2}}-8x=0$ .
$x\left( x-8 \right)=0$ Hence $x=0$ or $x-8=0$
i.e. x can be either 0 or 8. So when x=8, y=8
Thus we got the coordinate of $\left( x,y \right)$ as $\left( 8,8 \right)$ .
We can take the coordinate of $P\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $Q\left( at_{2}^{2},2a{{t}_{2}} \right)$ .
Thus we got a=2, So, \[~P\left( 2t_{1}^{2},4{{t}_{1}} \right)\] and $Q\left( 2t_{2}^{2},4a{{t}_{2}} \right)$ .
Now we get the coordinate of $\left( x,y \right)=\left( 8,8 \right)$ and coordinate \[\left( 2t_{1}^{2},4{{t}_{1}} \right)\] .
Now let us equate the x and y coordinates of both.
Thus,
$\begin{align}
& 4{{t}_{1}}=8 \\
& {{t}_{1}}=\dfrac{8}{4}=2 \\
\end{align}$
Thus we got ${{t}_{1}}=2$
We know that ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}=-2-\dfrac{2}{2}=-2-1=-3$
Thus ${{t}_{2}}=-3$ .
Thus let us put ${{t}_{1}}=2$ and ${{t}_{2}}=-3$ in the coordinate of P and Q
\[\begin{align}
& ~P\left( 2t_{1}^{2},4{{t}_{1}} \right)=P\left( 2\times {{2}^{2}},4\times 2 \right)=P\left( 8,8 \right) \\
& Q\left( 2t_{2}^{2},4a{{t}_{2}} \right)=Q\left( 2\times {{\left( -3 \right)}^{2}},4\times -3 \right)Q\left( 18,-12 \right) \\
\end{align}\]
Now, let us find the length of normal chord PQ using distance formula
distance$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Put $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 8,8 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 18,12 \right)$
Length of normal chord PQ $=\sqrt{{{\left( 18-8 \right)}^{2}}+{{\left( -12-8 \right)}^{2}}}$
\[=\sqrt{{{10}^{2}}+{{\left( -20 \right)}^{2}}}=\sqrt{100+400}=\sqrt{500}=\sqrt{100\times 5}=10\sqrt{5}\] .
Hence we got the length of a normal chord as $10\sqrt{5}$ .
Therefore, option (C) is the correct answer.
Note: The normal at the point \[\left( 2t_{1}^{2},4{{t}_{1}} \right)\] meets the parabola again in the point $\left( 2t_{2}^{2},4a{{t}_{2}} \right)$ , thus ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}$ . We may sometimes take ${{t}_{1}}{{t}_{2}}=-1$ , but that is not concept to use and it will give us wrong values of ${{t}_{1}}$ and ${{t}_{2}}$ .
Complete step-by-step answer:
We have been given the equation of parabola as \[{{y}^{2}}=8x\] .
First let us draw the parabola \[{{y}^{2}}=8x\]
We know the general equation of a parabola as ${{y}^{2}}=4ax$ , Now let us compare both the general equation and the given equation of parabola.
From that we get, latus rectum $4a=8$
$\begin{align}
& a=\dfrac{8}{4}=2 \\
& \text{i}\text{.e}\text{. }a=2 \\
\end{align}$
Let us take the two points on the parabola as $P\left( {{t}_{1}} \right)$ and $Q\left( {{t}_{2}} \right)$ . we know the relation ${{t}_{1}}{{t}_{2}}=-1$ .
Similarly we know that ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}$ .
It is said that the abscissa and ordinates are equal, the coordinates are equal so put y=x.
${{y}^{2}}=8x$
So, ${{x}^{2}}=8x\Rightarrow {{x}^{2}}-8x=0$ .
$x\left( x-8 \right)=0$ Hence $x=0$ or $x-8=0$
i.e. x can be either 0 or 8. So when x=8, y=8
Thus we got the coordinate of $\left( x,y \right)$ as $\left( 8,8 \right)$ .
We can take the coordinate of $P\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $Q\left( at_{2}^{2},2a{{t}_{2}} \right)$ .
Thus we got a=2, So, \[~P\left( 2t_{1}^{2},4{{t}_{1}} \right)\] and $Q\left( 2t_{2}^{2},4a{{t}_{2}} \right)$ .
Now we get the coordinate of $\left( x,y \right)=\left( 8,8 \right)$ and coordinate \[\left( 2t_{1}^{2},4{{t}_{1}} \right)\] .
Now let us equate the x and y coordinates of both.
Thus,
$\begin{align}
& 4{{t}_{1}}=8 \\
& {{t}_{1}}=\dfrac{8}{4}=2 \\
\end{align}$
Thus we got ${{t}_{1}}=2$
We know that ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}=-2-\dfrac{2}{2}=-2-1=-3$
Thus ${{t}_{2}}=-3$ .
Thus let us put ${{t}_{1}}=2$ and ${{t}_{2}}=-3$ in the coordinate of P and Q
\[\begin{align}
& ~P\left( 2t_{1}^{2},4{{t}_{1}} \right)=P\left( 2\times {{2}^{2}},4\times 2 \right)=P\left( 8,8 \right) \\
& Q\left( 2t_{2}^{2},4a{{t}_{2}} \right)=Q\left( 2\times {{\left( -3 \right)}^{2}},4\times -3 \right)Q\left( 18,-12 \right) \\
\end{align}\]
Now, let us find the length of normal chord PQ using distance formula
distance$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
Put $\left( {{x}_{1}},{{y}_{1}} \right)=\left( 8,8 \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)=\left( 18,12 \right)$
Length of normal chord PQ $=\sqrt{{{\left( 18-8 \right)}^{2}}+{{\left( -12-8 \right)}^{2}}}$
\[=\sqrt{{{10}^{2}}+{{\left( -20 \right)}^{2}}}=\sqrt{100+400}=\sqrt{500}=\sqrt{100\times 5}=10\sqrt{5}\] .
Hence we got the length of a normal chord as $10\sqrt{5}$ .
Therefore, option (C) is the correct answer.
Note: The normal at the point \[\left( 2t_{1}^{2},4{{t}_{1}} \right)\] meets the parabola again in the point $\left( 2t_{2}^{2},4a{{t}_{2}} \right)$ , thus ${{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}$ . We may sometimes take ${{t}_{1}}{{t}_{2}}=-1$ , but that is not concept to use and it will give us wrong values of ${{t}_{1}}$ and ${{t}_{2}}$ .
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE