Let A$ = \{ 12,13,14,15,16,17\} $ and $f:$ A $ \to $ Z be a function given by $f\left( x \right) = $ highest prime factor of $x$. Find range of $f$.
Answer
Verified
448.8k+ views
Hint: The given function \[f\left( x \right)\] is defined over domain A $ = \{ 12,13,14,15,16,17\} $ and we have to find the range of $f\left( x \right)$ . the function $f\left( x \right) = $ highest prime factor of $x$. Firstly, find the factor of each number present in its domain that is from $12$ to $17$, then choose the factor which is highest among all other factors of a number and grouped together which is the required range of the function $f\left( x \right)$.
Complete step-by-step answer:
Given, $f:$ A $ \to $Z be a function such that $f\left( x \right) = $ highest prime factor of $x$.
Domain A $ = \{ 12,13,14,15,16,17\} $.
Now, we have to write the prime factors of each number.
Prime factor of $12 = 2 \times 2 \times 3$
The highest prime factor of $12$ is $3$.
Prime factor of $13 = 13$
The highest prime factor of $13$ is $13$.
Prime factor of $14 = 2 \times 7$
The highest prime factor of $14$ is $7$.
Prime factor of $15 = 3 \times 5$
The highest prime factor of $15$ is $5$.
Prime factor of $16 = 2 \times 2 \times 2 \times 2$
The highest prime factor of $16$ is $2$.
Prime factor of $17 = 17$
The highest prime factor of $17$ is $17$.
So, the highest prime factor of numbers in the domain A is $\left\{ {3,13,7,5,2,17} \right\}$. Now, putting them in sequence we get,
The range of the given function $f\left( x \right)$ is $\left\{ {2,3,5,7,13,17} \right\}$.
Note:
The domain of a function is the complete set of possible values of the independent variable (usually $x$). The range of a function is the complete set of all possible resulting values of the dependent variable (usually $y$) after we have substituted the domain.
Complete step-by-step answer:
Given, $f:$ A $ \to $Z be a function such that $f\left( x \right) = $ highest prime factor of $x$.
Domain A $ = \{ 12,13,14,15,16,17\} $.
Now, we have to write the prime factors of each number.
Prime factor of $12 = 2 \times 2 \times 3$
The highest prime factor of $12$ is $3$.
Prime factor of $13 = 13$
The highest prime factor of $13$ is $13$.
Prime factor of $14 = 2 \times 7$
The highest prime factor of $14$ is $7$.
Prime factor of $15 = 3 \times 5$
The highest prime factor of $15$ is $5$.
Prime factor of $16 = 2 \times 2 \times 2 \times 2$
The highest prime factor of $16$ is $2$.
Prime factor of $17 = 17$
The highest prime factor of $17$ is $17$.
So, the highest prime factor of numbers in the domain A is $\left\{ {3,13,7,5,2,17} \right\}$. Now, putting them in sequence we get,
The range of the given function $f\left( x \right)$ is $\left\{ {2,3,5,7,13,17} \right\}$.
Note:
The domain of a function is the complete set of possible values of the independent variable (usually $x$). The range of a function is the complete set of all possible resulting values of the dependent variable (usually $y$) after we have substituted the domain.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE