Answer
Verified
497.1k+ views
Hint: Take any general element of \[{{R}_{0}}\] and find the identity element of \[R\] by forming the equations using properties of the identity element and then solve them. Similarly take any general element of \[R\] and find the identity of \[{{R}_{0}}\] by forming equations using properties of the identity element.
Complete step-by-step answer:
We have the set \[A={{R}_{0}}\times R\] where \[{{R}_{0}}\] denotes the set of all non-zero numbers. We have a binary relation on \[A\] defined as \[\left( a,b \right)O\left( c,d \right)=\left( ac,bc+d \right)\] for all \[\left( a,b \right),\left( c,d \right)\in {{R}_{0}}\times R\]. We have to find the identity element in \[A\].
Let’s assume that the identity element of \[A\] is of the form \[\left( x,y \right)\].
We know that any identity element has the property that any element operated with identity element returns the element itself, i.e., for any \[\left( a,b \right)\in A\], we have \[\left( a,b \right)O\left( x,y \right)=\left( x,y \right)O\left( a,b \right)=\left( a,b \right)\].
We know that for all \[\left( a,b \right),\left( c,d \right)\in {{R}_{0}}\times R\], we have \[\left( a,b \right)O\left( c,d \right)=\left( ac,bc+d \right)\].
Thus, we have \[\left( a,b \right)O\left( x,y \right)=\left( ax,bx+y \right)=\left( a,b \right)\].
Comparing the terms on both sides of the equation, we have \[ax=a,bx+y=b\].
We can clearly see that the solution of the above equations is \[x=1,y=0\].
Hence, we have \[\left( x,y \right)=\left( 1,0 \right)\] as the identity of the given set \[A={{R}_{0}}\times R\] where \[{{R}_{0}}\] denotes the set of all non-zero numbers .
Note: A binary operation is a calculation that combines two elements of a non empty set to produce another element. A binary operation on a non empty set is an operation whose two domains and co-domains are the same set. Addition, subtraction and multiplication are the common binary operations. As the result of performing an operation on a set lies in the set itself, we say that the given binary operation is closed. Binary operations may or may not be associative and distributive. The inverse of any element of a set under binary operation is the element such that the element operated with its inverse gives the identity element.
Complete step-by-step answer:
We have the set \[A={{R}_{0}}\times R\] where \[{{R}_{0}}\] denotes the set of all non-zero numbers. We have a binary relation on \[A\] defined as \[\left( a,b \right)O\left( c,d \right)=\left( ac,bc+d \right)\] for all \[\left( a,b \right),\left( c,d \right)\in {{R}_{0}}\times R\]. We have to find the identity element in \[A\].
Let’s assume that the identity element of \[A\] is of the form \[\left( x,y \right)\].
We know that any identity element has the property that any element operated with identity element returns the element itself, i.e., for any \[\left( a,b \right)\in A\], we have \[\left( a,b \right)O\left( x,y \right)=\left( x,y \right)O\left( a,b \right)=\left( a,b \right)\].
We know that for all \[\left( a,b \right),\left( c,d \right)\in {{R}_{0}}\times R\], we have \[\left( a,b \right)O\left( c,d \right)=\left( ac,bc+d \right)\].
Thus, we have \[\left( a,b \right)O\left( x,y \right)=\left( ax,bx+y \right)=\left( a,b \right)\].
Comparing the terms on both sides of the equation, we have \[ax=a,bx+y=b\].
We can clearly see that the solution of the above equations is \[x=1,y=0\].
Hence, we have \[\left( x,y \right)=\left( 1,0 \right)\] as the identity of the given set \[A={{R}_{0}}\times R\] where \[{{R}_{0}}\] denotes the set of all non-zero numbers .
Note: A binary operation is a calculation that combines two elements of a non empty set to produce another element. A binary operation on a non empty set is an operation whose two domains and co-domains are the same set. Addition, subtraction and multiplication are the common binary operations. As the result of performing an operation on a set lies in the set itself, we say that the given binary operation is closed. Binary operations may or may not be associative and distributive. The inverse of any element of a set under binary operation is the element such that the element operated with its inverse gives the identity element.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE