Answer
Verified
497.4k+ views
Hint: Use the two given probabilities to make two equations. Then, using the formula $P\left( E\cup F \right)=P\left( E \right)+P\left( F \right)-P\left( E\cap F \right)$ and $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$, make two equations and solve them to find the values of $P\left( E \right)$ and $P\left( F \right)$.
“Complete step-by-step answer:”
We know the following facts:
1. The probability that two events A and B happen together is given as $P\left( A\cap B \right)$
2. The probability that at least one of the two events A and B happens is given as $P\left( A\cup B \right)$
3. The probability that an event E does not happen is given as $1-P\left( E \right)$, if $P\left( E \right)$ is the probability that the event A happens.
Applying the above facts to the statements given in the question:
Probability that E and F happen together is $\dfrac{1}{12}$, which can be written as $P\left( E\cap F \right)=\dfrac{1}{12}$
The second statement, probability that neither E nor F happen can be understood as the negation of the event that at least one of them happens.
The probability that at least one of E or F happens is given as $P\left( E\cup F \right)$.
Hence, the probability of neither E nor F happens is given as $1-P\left( E\cup F \right)=\dfrac{1}{2}$. Upon rearranging,
$\begin{align}
& \Rightarrow P\left( E\cup F \right)=1-\dfrac{1}{2} \\
& \Rightarrow P\left( E\cup F \right)=\dfrac{1}{2} \\
\end{align}$
Thus, we have two results $P\left( E\cap F \right)=\dfrac{1}{12}$ and $P\left( E\cup F \right)=\dfrac{1}{2}$.
We know that $P\left( E\cup F \right)=P\left( E \right)+P\left( F \right)-P\left( E\cap F \right)$.
Substituting the value of $P\left( E\cup F \right)$ and $P\left( E\cap F \right)$ in the above formula, we get
\[\begin{align}
& \dfrac{1}{2}=P\left( E \right)+P\left( F \right)-\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{1}{2}+\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{7}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
Also, since the events E and F are independent, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$
Thus, $P\left( E \right)\cdot P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
To solve the equations (1) and (2) to find $P\left( E \right)$ and $P\left( F \right)$, we can use the relation $a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
In this equation, $a=P\left( E \right)$ and $b=P\left( F \right)$
\[\mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( P\left( E \right)+P\left( F \right) \right)}^{2}}-4P\left( E \right)\cdot P\left( F \right)\]
Substituting values from equations (1) and (2),
\[\begin{align}
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( \dfrac{7}{12} \right)}^{2}}-4\left( \dfrac{1}{12} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\left( \dfrac{49}{144} \right)-\left( \dfrac{1}{3} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\dfrac{1}{144} \\
& \Rightarrow P\left( E \right)-P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Adding equations (1) and (3),
\[2\cdot P\left( E \right)=\dfrac{8}{12}\]
\[\Rightarrow P\left( E \right)=\dfrac{4}{12}=\dfrac{1}{3}\]
Subtracting equation (3) from equation (1), we get
\[2\cdot P\left( F \right)=\dfrac{6}{12}\]
\[\Rightarrow P\left( F \right)=\dfrac{3}{12}=\dfrac{1}{4}\]
Thus, the required value, $\dfrac{P\left( E \right)}{P\left( F \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{1}{4}}=\dfrac{4}{3}$
Therefore, the correct answer is option (d).
Note: The formula used here, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$ is only valid if the two events E and F are independent of each other (given in the question). Otherwise this formula is not applicable, and then using this formula would result in an incorrect answer.
“Complete step-by-step answer:”
We know the following facts:
1. The probability that two events A and B happen together is given as $P\left( A\cap B \right)$
2. The probability that at least one of the two events A and B happens is given as $P\left( A\cup B \right)$
3. The probability that an event E does not happen is given as $1-P\left( E \right)$, if $P\left( E \right)$ is the probability that the event A happens.
Applying the above facts to the statements given in the question:
Probability that E and F happen together is $\dfrac{1}{12}$, which can be written as $P\left( E\cap F \right)=\dfrac{1}{12}$
The second statement, probability that neither E nor F happen can be understood as the negation of the event that at least one of them happens.
The probability that at least one of E or F happens is given as $P\left( E\cup F \right)$.
Hence, the probability of neither E nor F happens is given as $1-P\left( E\cup F \right)=\dfrac{1}{2}$. Upon rearranging,
$\begin{align}
& \Rightarrow P\left( E\cup F \right)=1-\dfrac{1}{2} \\
& \Rightarrow P\left( E\cup F \right)=\dfrac{1}{2} \\
\end{align}$
Thus, we have two results $P\left( E\cap F \right)=\dfrac{1}{12}$ and $P\left( E\cup F \right)=\dfrac{1}{2}$.
We know that $P\left( E\cup F \right)=P\left( E \right)+P\left( F \right)-P\left( E\cap F \right)$.
Substituting the value of $P\left( E\cup F \right)$ and $P\left( E\cap F \right)$ in the above formula, we get
\[\begin{align}
& \dfrac{1}{2}=P\left( E \right)+P\left( F \right)-\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{1}{2}+\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{7}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
Also, since the events E and F are independent, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$
Thus, $P\left( E \right)\cdot P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
To solve the equations (1) and (2) to find $P\left( E \right)$ and $P\left( F \right)$, we can use the relation $a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
In this equation, $a=P\left( E \right)$ and $b=P\left( F \right)$
\[\mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( P\left( E \right)+P\left( F \right) \right)}^{2}}-4P\left( E \right)\cdot P\left( F \right)\]
Substituting values from equations (1) and (2),
\[\begin{align}
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( \dfrac{7}{12} \right)}^{2}}-4\left( \dfrac{1}{12} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\left( \dfrac{49}{144} \right)-\left( \dfrac{1}{3} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\dfrac{1}{144} \\
& \Rightarrow P\left( E \right)-P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Adding equations (1) and (3),
\[2\cdot P\left( E \right)=\dfrac{8}{12}\]
\[\Rightarrow P\left( E \right)=\dfrac{4}{12}=\dfrac{1}{3}\]
Subtracting equation (3) from equation (1), we get
\[2\cdot P\left( F \right)=\dfrac{6}{12}\]
\[\Rightarrow P\left( F \right)=\dfrac{3}{12}=\dfrac{1}{4}\]
Thus, the required value, $\dfrac{P\left( E \right)}{P\left( F \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{1}{4}}=\dfrac{4}{3}$
Therefore, the correct answer is option (d).
Note: The formula used here, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$ is only valid if the two events E and F are independent of each other (given in the question). Otherwise this formula is not applicable, and then using this formula would result in an incorrect answer.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE