Let \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
Then
(a) \[f\]is continuous at \[x=1\]
(b) \[f\]is not differentiable at \[x=1\]
(c) \[f\]is continuous and differentiable at \[x=1\]
(d) \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\]
Answer
Verified
504.9k+ views
Hint: If the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] , the function is said to be continuous at \[x=a\]. A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE