
Let m be the smallest positive integer such that the coefficient of ${{\text{x}}^{\text{2}}}$ in the expansion of ${\left( {{\text{1 + x}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{4}}}{\text{ + }}...........{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{49}}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{50}}}}$ is (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$ for some positive integer n. Then the value of n is-
Answer
613.8k+ views
Hint-To solve this question, we need to know the basics of Binomial Theorem. i.e.(x+y)n = nΣr=0 nCr xn – r · yr. where,${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
And by using the above statement we will get the value of ${{\text{x}}^{\text{2}}}$ in the given expansion.
Now, from above equation, we observe that,
${\left( {{\text{1 + x}}} \right)^{\text{2}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^{\text{2}}{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^3}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^3{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^4}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^4{{\text{C}}_{\text{2}}}$
Similarly, we say,
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^n{{\text{C}}_{\text{2}}}$
According to question:
${\left( {{\text{1 + x}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{4}}}{\text{ + }}...........{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{49}}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{50}}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
coefficient of ${{\text{x}}^{\text{2}}}$ in given expression-
${}^{\text{2}}{{\text{C}}_{\text{2}}}$+${}^3{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+………….+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
As we know,
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ + }}{}^{\text{n}}{{\text{C}}_{{\text{r - 1}}}}{\text{ = }}{}^{{\text{n + 1}}}{{\text{C}}_{\text{r}}}$
${}^{\text{3}}{{\text{C}}_3}$+${}^{\text{3}}{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^4{{\text{C}}_3}$+${}^4{{\text{C}}_{\text{2}}}$+${}^5{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^5{{\text{C}}_3}$+${}^5{{\text{C}}_{\text{2}}}$+………
${}^6{{\text{C}}_3}$+${}^6{{\text{C}}_{\text{2}}}$+${}^7{{\text{C}}_2}$……
Similarly, by multiple simplification, we get,
${}^{49}{{\text{C}}_3}$+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^{50}{{\text{C}}_3}$+ (${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$-${}^{50}{{\text{C}}_{\text{2}}}$)+${}^{50}{{\text{C}}_{\text{2}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
Now, according to question-
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n${}^{51}{{\text{C}}_3}$+${}^{51}{{\text{C}}_3}$
${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n$\dfrac{{51!}}{{{\text{[3}}!{\text{(51 - 3)}}!{\text{]}}}}$
3n$ \times \dfrac{{51}}{3}$$\dfrac{{50!}}{{{\text{[2}}!{\text{(51 - 2)}}!{\text{]}}}}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
3n$ \times \dfrac{{51}}{3}$$ \times $${}^{50}{{\text{C}}_2}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
51n+1=${{\text{m}}^{\text{2}}}$
Since, m be the smallest positive integer for some positive integer n.
And select n in such a way that m is a perfect square.
So, if we take n=5
We get ${{\text{m}}^{\text{2}}}$= 256, which is a perfect square.
Thus, the value of n will be 5 in this question.
Note- The total number of terms in the expansion of (x+y)n are (n+1). The sum of exponents of x and y is always n. and The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. nC0 = nCn, nC1 = nCn-1 , nC2 = nCn-2 ,….. etc.
Complete step-by-step answer:
And by using the above statement we will get the value of ${{\text{x}}^{\text{2}}}$ in the given expansion.
Now, from above equation, we observe that,
${\left( {{\text{1 + x}}} \right)^{\text{2}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^{\text{2}}{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^3}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^3{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^4}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^4{{\text{C}}_{\text{2}}}$
Similarly, we say,
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^n{{\text{C}}_{\text{2}}}$
According to question:
${\left( {{\text{1 + x}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{4}}}{\text{ + }}...........{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{49}}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{50}}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
coefficient of ${{\text{x}}^{\text{2}}}$ in given expression-
${}^{\text{2}}{{\text{C}}_{\text{2}}}$+${}^3{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+………….+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
As we know,
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ + }}{}^{\text{n}}{{\text{C}}_{{\text{r - 1}}}}{\text{ = }}{}^{{\text{n + 1}}}{{\text{C}}_{\text{r}}}$
${}^{\text{3}}{{\text{C}}_3}$+${}^{\text{3}}{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^4{{\text{C}}_3}$+${}^4{{\text{C}}_{\text{2}}}$+${}^5{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^5{{\text{C}}_3}$+${}^5{{\text{C}}_{\text{2}}}$+………
${}^6{{\text{C}}_3}$+${}^6{{\text{C}}_{\text{2}}}$+${}^7{{\text{C}}_2}$……
Similarly, by multiple simplification, we get,
${}^{49}{{\text{C}}_3}$+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^{50}{{\text{C}}_3}$+ (${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$-${}^{50}{{\text{C}}_{\text{2}}}$)+${}^{50}{{\text{C}}_{\text{2}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
Now, according to question-
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n${}^{51}{{\text{C}}_3}$+${}^{51}{{\text{C}}_3}$
${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n$\dfrac{{51!}}{{{\text{[3}}!{\text{(51 - 3)}}!{\text{]}}}}$
3n$ \times \dfrac{{51}}{3}$$\dfrac{{50!}}{{{\text{[2}}!{\text{(51 - 2)}}!{\text{]}}}}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
3n$ \times \dfrac{{51}}{3}$$ \times $${}^{50}{{\text{C}}_2}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
51n+1=${{\text{m}}^{\text{2}}}$
Since, m be the smallest positive integer for some positive integer n.
And select n in such a way that m is a perfect square.
So, if we take n=5
We get ${{\text{m}}^{\text{2}}}$= 256, which is a perfect square.
Thus, the value of n will be 5 in this question.
Note- The total number of terms in the expansion of (x+y)n are (n+1). The sum of exponents of x and y is always n. and The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. nC0 = nCn, nC1 = nCn-1 , nC2 = nCn-2 ,….. etc.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

