
Let m be the smallest positive integer such that the coefficient of ${{\text{x}}^{\text{2}}}$ in the expansion of ${\left( {{\text{1 + x}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{4}}}{\text{ + }}...........{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{49}}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{50}}}}$ is (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$ for some positive integer n. Then the value of n is-
Answer
599.4k+ views
Hint-To solve this question, we need to know the basics of Binomial Theorem. i.e.(x+y)n = nΣr=0 nCr xn – r · yr. where,${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
And by using the above statement we will get the value of ${{\text{x}}^{\text{2}}}$ in the given expansion.
Now, from above equation, we observe that,
${\left( {{\text{1 + x}}} \right)^{\text{2}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^{\text{2}}{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^3}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^3{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^4}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^4{{\text{C}}_{\text{2}}}$
Similarly, we say,
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^n{{\text{C}}_{\text{2}}}$
According to question:
${\left( {{\text{1 + x}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{4}}}{\text{ + }}...........{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{49}}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{50}}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
coefficient of ${{\text{x}}^{\text{2}}}$ in given expression-
${}^{\text{2}}{{\text{C}}_{\text{2}}}$+${}^3{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+………….+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
As we know,
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ + }}{}^{\text{n}}{{\text{C}}_{{\text{r - 1}}}}{\text{ = }}{}^{{\text{n + 1}}}{{\text{C}}_{\text{r}}}$
${}^{\text{3}}{{\text{C}}_3}$+${}^{\text{3}}{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^4{{\text{C}}_3}$+${}^4{{\text{C}}_{\text{2}}}$+${}^5{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^5{{\text{C}}_3}$+${}^5{{\text{C}}_{\text{2}}}$+………
${}^6{{\text{C}}_3}$+${}^6{{\text{C}}_{\text{2}}}$+${}^7{{\text{C}}_2}$……
Similarly, by multiple simplification, we get,
${}^{49}{{\text{C}}_3}$+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^{50}{{\text{C}}_3}$+ (${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$-${}^{50}{{\text{C}}_{\text{2}}}$)+${}^{50}{{\text{C}}_{\text{2}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
Now, according to question-
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n${}^{51}{{\text{C}}_3}$+${}^{51}{{\text{C}}_3}$
${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n$\dfrac{{51!}}{{{\text{[3}}!{\text{(51 - 3)}}!{\text{]}}}}$
3n$ \times \dfrac{{51}}{3}$$\dfrac{{50!}}{{{\text{[2}}!{\text{(51 - 2)}}!{\text{]}}}}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
3n$ \times \dfrac{{51}}{3}$$ \times $${}^{50}{{\text{C}}_2}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
51n+1=${{\text{m}}^{\text{2}}}$
Since, m be the smallest positive integer for some positive integer n.
And select n in such a way that m is a perfect square.
So, if we take n=5
We get ${{\text{m}}^{\text{2}}}$= 256, which is a perfect square.
Thus, the value of n will be 5 in this question.
Note- The total number of terms in the expansion of (x+y)n are (n+1). The sum of exponents of x and y is always n. and The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. nC0 = nCn, nC1 = nCn-1 , nC2 = nCn-2 ,….. etc.
Complete step-by-step answer:
And by using the above statement we will get the value of ${{\text{x}}^{\text{2}}}$ in the given expansion.
Now, from above equation, we observe that,
${\left( {{\text{1 + x}}} \right)^{\text{2}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^{\text{2}}{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^3}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^3{{\text{C}}_{\text{2}}}$
${\left( {{\text{1 + x}}} \right)^4}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^4{{\text{C}}_{\text{2}}}$
Similarly, we say,
${\left( {{\text{1 + x}}} \right)^{\text{n}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= ${}^n{{\text{C}}_{\text{2}}}$
According to question:
${\left( {{\text{1 + x}}} \right)^{\text{2}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{3}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{\text{4}}}{\text{ + }}...........{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{49}}}}{\text{ + }}{\left( {{\text{1 + x}}} \right)^{{\text{50}}}}$$ \to $coefficient of ${{\text{x}}^{\text{2}}}$= (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
coefficient of ${{\text{x}}^{\text{2}}}$ in given expression-
${}^{\text{2}}{{\text{C}}_{\text{2}}}$+${}^3{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+………….+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
As we know,
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ + }}{}^{\text{n}}{{\text{C}}_{{\text{r - 1}}}}{\text{ = }}{}^{{\text{n + 1}}}{{\text{C}}_{\text{r}}}$
${}^{\text{3}}{{\text{C}}_3}$+${}^{\text{3}}{{\text{C}}_{\text{2}}}$+${}^4{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^4{{\text{C}}_3}$+${}^4{{\text{C}}_{\text{2}}}$+${}^5{{\text{C}}_{\text{2}}}$+…………+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^5{{\text{C}}_3}$+${}^5{{\text{C}}_{\text{2}}}$+………
${}^6{{\text{C}}_3}$+${}^6{{\text{C}}_{\text{2}}}$+${}^7{{\text{C}}_2}$……
Similarly, by multiple simplification, we get,
${}^{49}{{\text{C}}_3}$+${}^{49}{{\text{C}}_{\text{2}}}$+${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$
${}^{50}{{\text{C}}_3}$+ (${}^{50}{{\text{C}}_{\text{2}}}$${{\text{m}}^{\text{2}}}$-${}^{50}{{\text{C}}_{\text{2}}}$)+${}^{50}{{\text{C}}_{\text{2}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
Now, according to question-
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = (3n+1)${}^{{\text{51}}}{{\text{C}}_{\text{3}}}$
${}^{51}{{\text{C}}_3}$+${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n${}^{51}{{\text{C}}_3}$+${}^{51}{{\text{C}}_3}$
${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1) = 3n$\dfrac{{51!}}{{{\text{[3}}!{\text{(51 - 3)}}!{\text{]}}}}$
3n$ \times \dfrac{{51}}{3}$$\dfrac{{50!}}{{{\text{[2}}!{\text{(51 - 2)}}!{\text{]}}}}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
3n$ \times \dfrac{{51}}{3}$$ \times $${}^{50}{{\text{C}}_2}$= ${}^{50}{{\text{C}}_{\text{2}}}$(${{\text{m}}^{\text{2}}}$-1)
51n+1=${{\text{m}}^{\text{2}}}$
Since, m be the smallest positive integer for some positive integer n.
And select n in such a way that m is a perfect square.
So, if we take n=5
We get ${{\text{m}}^{\text{2}}}$= 256, which is a perfect square.
Thus, the value of n will be 5 in this question.
Note- The total number of terms in the expansion of (x+y)n are (n+1). The sum of exponents of x and y is always n. and The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. nC0 = nCn, nC1 = nCn-1 , nC2 = nCn-2 ,….. etc.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

