Answer
Verified
459.3k+ views
Hint: First find the possible ordered pair of the set A and the set B and then try to understand the set the condition of the set that is asked in the problem, which contains all the elements that are in both the sets A and B. After the formation of the required set, we can count the element to get the required result.
Complete step-by-step answer:
It is given in the problem that let \[\mathbb{Z}\] be the set of all integers and $A = \left\{ {\left( {a,b} \right):{a^2} + 3{b^2} = 28,a,b \in \mathbb{Z}} \right\}$ and $B = \left\{ {\left( {a,b} \right):a > b,a,b \in \mathbb{Z}} \right\}$.
We have to find the number of elements in the set$A \cap B$.
First, we look into the set $A$.
$A = \left\{ {\left( {a,b} \right):{a^2} + 3{b^2} = 28,a,b \in \mathbb{Z}} \right\}$
It means that the set A contained the element of the ordered pair that follows the equation:
${a^2} + 3{b^2} = 28$
Put\[a = 1\]into the above equation,
${\left( 1 \right)^2} + 3{b^2} = 28$
$ \Rightarrow 1 + 3{b^2} = 28$
$ \Rightarrow 3{b^2} = 28 - 1$
$ \Rightarrow 3{b^2} = 27$
$ \Rightarrow {b^2} = 9$
$ \Rightarrow b = \pm 3$
So, the obtained points are $\left( {1,3} \right)$ and $\left( {1, - 3} \right)$.
Similarly, we find all the points that hold the given equations and the obtained given points are:
$A = \left\{ {\left( {5,1} \right),\left( { - 5,1} \right),\left( {5, - 1} \right),\left( { - 5, - 1} \right),\left( {4,2} \right),\left( {4, - 2} \right),\left( { - 4,2} \right),\left( { - 4, - 2} \right),\left( {1,3} \right),\left( { - 1,3} \right),\left( {1, - 3} \right),\left( { - 1, - 3} \right)} \right\}$
Now, take a look at the set B.
$B = \left\{ {\left( {a,b} \right):a > b,a,b \in \mathbb{Z}} \right\}$
The above set contains all the pairs of points $\left( {a,b} \right)$ such that $a > b$ and $a,b \in \mathbb{Z}$.
Now, take a look at the set that we have to find is:
$A \cap B$
This set contains all the elements that are in both the set $A$ and $B$.
All the elements of the set $A$ whose first element of the ordered pair is greater than the second element are the elements of the set $A \cap B$. So, the element of the set $A \cap B$ are:
$A \cap B = \left\{ {\left( {1,3} \right),\left( { - 1,3} \right),\left( { - 4, - 2} \right),\left( { - 4,2} \right),\left( { - 5, - 1} \right),\left( { - 5,1} \right)} \right\}$
So, there are 6 elements in the set \[A \cap B\].
Hence, the option (3) is correct.
Note: We can see the set B, it has the ordered pair of element such that the first element is greater than the second element, and both the element of the ordered pair is an integer number, thus it contains infinite number of elements, but the set A has the finite number of elements, so we can easily find the intersection of these sets.
Complete step-by-step answer:
It is given in the problem that let \[\mathbb{Z}\] be the set of all integers and $A = \left\{ {\left( {a,b} \right):{a^2} + 3{b^2} = 28,a,b \in \mathbb{Z}} \right\}$ and $B = \left\{ {\left( {a,b} \right):a > b,a,b \in \mathbb{Z}} \right\}$.
We have to find the number of elements in the set$A \cap B$.
First, we look into the set $A$.
$A = \left\{ {\left( {a,b} \right):{a^2} + 3{b^2} = 28,a,b \in \mathbb{Z}} \right\}$
It means that the set A contained the element of the ordered pair that follows the equation:
${a^2} + 3{b^2} = 28$
Put\[a = 1\]into the above equation,
${\left( 1 \right)^2} + 3{b^2} = 28$
$ \Rightarrow 1 + 3{b^2} = 28$
$ \Rightarrow 3{b^2} = 28 - 1$
$ \Rightarrow 3{b^2} = 27$
$ \Rightarrow {b^2} = 9$
$ \Rightarrow b = \pm 3$
So, the obtained points are $\left( {1,3} \right)$ and $\left( {1, - 3} \right)$.
Similarly, we find all the points that hold the given equations and the obtained given points are:
$A = \left\{ {\left( {5,1} \right),\left( { - 5,1} \right),\left( {5, - 1} \right),\left( { - 5, - 1} \right),\left( {4,2} \right),\left( {4, - 2} \right),\left( { - 4,2} \right),\left( { - 4, - 2} \right),\left( {1,3} \right),\left( { - 1,3} \right),\left( {1, - 3} \right),\left( { - 1, - 3} \right)} \right\}$
Now, take a look at the set B.
$B = \left\{ {\left( {a,b} \right):a > b,a,b \in \mathbb{Z}} \right\}$
The above set contains all the pairs of points $\left( {a,b} \right)$ such that $a > b$ and $a,b \in \mathbb{Z}$.
Now, take a look at the set that we have to find is:
$A \cap B$
This set contains all the elements that are in both the set $A$ and $B$.
All the elements of the set $A$ whose first element of the ordered pair is greater than the second element are the elements of the set $A \cap B$. So, the element of the set $A \cap B$ are:
$A \cap B = \left\{ {\left( {1,3} \right),\left( { - 1,3} \right),\left( { - 4, - 2} \right),\left( { - 4,2} \right),\left( { - 5, - 1} \right),\left( { - 5,1} \right)} \right\}$
So, there are 6 elements in the set \[A \cap B\].
Hence, the option (3) is correct.
Note: We can see the set B, it has the ordered pair of element such that the first element is greater than the second element, and both the element of the ordered pair is an integer number, thus it contains infinite number of elements, but the set A has the finite number of elements, so we can easily find the intersection of these sets.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers