Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . Then the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to
A. 1
B. 2
C. -1
D. -2
Answer
Verified
455.1k+ views
Hint:
We first apply the row-column operations to simplify the given determinant and then expand it along a column. We use the identities like $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ to find the cubic equation of z. we solve the equation through factorisation and find the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ .
Complete step by step answer:
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . $ \omega $ is the complex root of unity.
We have the identities that $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ .
We have been given the equation $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ . The determinant value is 0.
We first try to expand the determinant using some row-column operations.
We apply the operation $ {{C}_{1}}^{'}={{C}_{1}}+{{C}_{2}}+{{C}_{3}} $ .
So, $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left| \begin{matrix}
z+1+\omega +{{\omega }^{2}} & \omega & {{\omega }^{2}} \\
z+1+\omega +{{\omega }^{2}} & z+{{\omega }^{2}} & 1 \\
z+1+\omega +{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right| $ .
Now we take the common term $ z+1+\omega +{{\omega }^{2}} $ out of the first column.
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z+1+\omega +{{\omega }^{2}} \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
1 & z+{{\omega }^{2}} & 1 \\
1 & 1 & z+\omega \\
\end{matrix} \right|\].
Now we apply the operation $ {{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}};{{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}} $ . We have $ 1+\omega +{{\omega }^{2}}=0 $ .
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
0 & z+{{\omega }^{2}}-\omega & 1-{{\omega }^{2}} \\
0 & 1-\omega & z+\omega -{{\omega }^{2}} \\
\end{matrix} \right|\].
Now we expand the determinant along the first column and get
\[z\left[ \left( z+{{\omega }^{2}}-\omega \right)\left( z+\omega -{{\omega }^{2}} \right)-\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right]=0\].
We simplify the equation and get
\[\begin{align}
& \Rightarrow z\left[ {{z}^{2}}-{{\left( \omega -{{\omega }^{2}} \right)}^{2}}-1+{{\omega }^{3}}-\omega -{{\omega }^{2}} \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-{{\omega }^{4}}+2{{\omega }^{3}}+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-\omega +2+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}+4 \right]=0 \\
\end{align}\]
We apply factorisation and get the values of z as $ z=0,\pm 2i $ where $ i=\sqrt{-1} $ .
Therefore, the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to 2. The correct option is B.
Note:
We need to always remember that in the case of determinant the multiplication and division happen only for a single row or column. In the case of the matrix, it happens for all the elements. Multiple row-column operations in a single step are not possible as the consecutive changes have to be followed.
We first apply the row-column operations to simplify the given determinant and then expand it along a column. We use the identities like $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ to find the cubic equation of z. we solve the equation through factorisation and find the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ .
Complete step by step answer:
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . $ \omega $ is the complex root of unity.
We have the identities that $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ .
We have been given the equation $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ . The determinant value is 0.
We first try to expand the determinant using some row-column operations.
We apply the operation $ {{C}_{1}}^{'}={{C}_{1}}+{{C}_{2}}+{{C}_{3}} $ .
So, $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left| \begin{matrix}
z+1+\omega +{{\omega }^{2}} & \omega & {{\omega }^{2}} \\
z+1+\omega +{{\omega }^{2}} & z+{{\omega }^{2}} & 1 \\
z+1+\omega +{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right| $ .
Now we take the common term $ z+1+\omega +{{\omega }^{2}} $ out of the first column.
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z+1+\omega +{{\omega }^{2}} \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
1 & z+{{\omega }^{2}} & 1 \\
1 & 1 & z+\omega \\
\end{matrix} \right|\].
Now we apply the operation $ {{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}};{{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}} $ . We have $ 1+\omega +{{\omega }^{2}}=0 $ .
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
0 & z+{{\omega }^{2}}-\omega & 1-{{\omega }^{2}} \\
0 & 1-\omega & z+\omega -{{\omega }^{2}} \\
\end{matrix} \right|\].
Now we expand the determinant along the first column and get
\[z\left[ \left( z+{{\omega }^{2}}-\omega \right)\left( z+\omega -{{\omega }^{2}} \right)-\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right]=0\].
We simplify the equation and get
\[\begin{align}
& \Rightarrow z\left[ {{z}^{2}}-{{\left( \omega -{{\omega }^{2}} \right)}^{2}}-1+{{\omega }^{3}}-\omega -{{\omega }^{2}} \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-{{\omega }^{4}}+2{{\omega }^{3}}+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-\omega +2+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}+4 \right]=0 \\
\end{align}\]
We apply factorisation and get the values of z as $ z=0,\pm 2i $ where $ i=\sqrt{-1} $ .
Therefore, the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to 2. The correct option is B.
Note:
We need to always remember that in the case of determinant the multiplication and division happen only for a single row or column. In the case of the matrix, it happens for all the elements. Multiple row-column operations in a single step are not possible as the consecutive changes have to be followed.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE