Answer
Verified
459k+ views
Hint: To solve this question, we will first try to find the value of \[~{{\omega }^{2}}\], \[~{{\omega }^{3}}\] and so on and try to get a general term for \[~{{\omega }^{n}}\] , where n is any integer. If we are able to find such a term, we can add $\alpha $ and $\beta $ directly, because if we add these both, we get a series which is in geometric progression. Then we will use the formula for sum of n terms of geometric series given as ${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$, where a is the first term of the geometric series and r is the common difference of the series. It is to be kept in mind that ${{i}^{2}}=-1$.
Complete step by step answer:
It is given to us that $\omega =\cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right)$.
To find \[~{{\omega }^{2}}\], we shall square both sides of the equation.
$\begin{align}
& \Rightarrow {{\omega }^{2}}={{\left( \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+2i\cos \left( \dfrac{2\pi }{7} \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)-{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+i\left( 2\sin \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right) \right) \\
\end{align}$
From trigonometry we know that ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $ and we also know that $2\sin \theta \cos \theta =\sin 2\theta $.
$\Rightarrow {{\omega }^{2}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)......\left( 1 \right)$
Now to find the value of \[~{{\omega }^{3}}\], we shall multiply the value of \[~{{\omega }^{2}}\] with \[~\omega \].
\[\begin{align}
& \Rightarrow {{\omega }^{2}}.\omega =\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right) \right]\left[ \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right] \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+i\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)-\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right) \right] \\
\end{align}\]
But from trigonometry, we know that $\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$ and we also that $\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)$. We will use these two properties in the above equation.
\[\begin{align}
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 3\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 3\left( \dfrac{2\pi }{7} \right) \right)......\left( 2 \right) \\
\end{align}\]
From (1) and (2), we can safely say that \[{{\omega }^{n}}=\cos \left( n\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( n\left( \dfrac{2\pi }{7} \right) \right)......\left( 3 \right)\]
We are given that $\alpha =\omega +{{\omega }^{2}}+{{\omega }^{4}}$ and $\beta ={{\omega }^{3}}+{{\omega }^{5}}+{{\omega }^{6}}$.
Therefore $\alpha +\beta =\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}$
We can see that this series is in geometric progression with 6 terms, where the first terms as \[~\omega \] and common difference is \[~\omega \].
We know that the sum of n terms of GP is given as ${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$, where a is the first term of the geometric series and r is the common difference of the series.
Hence, $\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}=\dfrac{\omega \left( {{\omega }^{6}}-1 \right)}{\omega -1}$
$\Rightarrow \alpha +\beta =\dfrac{\left( {{\omega }^{7}}-\omega \right)}{\omega -1}$
Now, if we substitute n = 7, \[{{\omega }^{7}}=\cos \left( 7\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 7\left( \dfrac{2\pi }{7} \right) \right)\]
\[\Rightarrow {{\omega }^{7}}=1\]
$\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{\left( 1-\omega \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =\dfrac{-1\left( \omega -1 \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =-1 \\
\end{align}$
So, the correct answer is “Option B”.
Note: In complex numbers, $\cos \theta +i\sin \theta $ is usually represented as ${{e}^{i\theta }}$. Hence, ${{\left( \cos \theta +i\sin \theta \right)}^{2}}={{e}^{2i\theta }}=\cos 2\theta +i\sin 2\theta $. Similarly, if we want to find ${{\left( \cos \theta +i\sin \theta \right)}^{n}}$, it can be directly represented by ${{\left( \cos \theta +i\sin \theta \right)}^{n}}={{e}^{ni\theta }}=\cos n\theta +i\sin n\theta $.
Complete step by step answer:
It is given to us that $\omega =\cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right)$.
To find \[~{{\omega }^{2}}\], we shall square both sides of the equation.
$\begin{align}
& \Rightarrow {{\omega }^{2}}={{\left( \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right)}^{2}} \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+2i\cos \left( \dfrac{2\pi }{7} \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{2}}={{\cos }^{2}}\left( \dfrac{2\pi }{7} \right)-{{\sin }^{2}}\left( \dfrac{2\pi }{7} \right)+i\left( 2\sin \left( \dfrac{2\pi }{7} \right)\cos \left( \dfrac{2\pi }{7} \right) \right) \\
\end{align}$
From trigonometry we know that ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta $ and we also know that $2\sin \theta \cos \theta =\sin 2\theta $.
$\Rightarrow {{\omega }^{2}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)......\left( 1 \right)$
Now to find the value of \[~{{\omega }^{3}}\], we shall multiply the value of \[~{{\omega }^{2}}\] with \[~\omega \].
\[\begin{align}
& \Rightarrow {{\omega }^{2}}.\omega =\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right) \right]\left[ \cos \left( \dfrac{2\pi }{7} \right)+i\sin \left( \dfrac{2\pi }{7} \right) \right] \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+i\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)+{{\left( i \right)}^{2}}\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right)-\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\left[ \cos \left( 2\left( \dfrac{2\pi }{7} \right) \right)\sin \left( \dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right) \right)\cos \left( \dfrac{2\pi }{7} \right) \right] \\
\end{align}\]
But from trigonometry, we know that $\cos A\cos B-\sin A\sin B=\cos \left( A+B \right)$ and we also that $\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)$. We will use these two properties in the above equation.
\[\begin{align}
& \Rightarrow {{\omega }^{3}}=\cos \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right)+i\sin \left( 2\left( \dfrac{2\pi }{7} \right)+\dfrac{2\pi }{7} \right) \\
& \Rightarrow {{\omega }^{3}}=\cos \left( 3\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 3\left( \dfrac{2\pi }{7} \right) \right)......\left( 2 \right) \\
\end{align}\]
From (1) and (2), we can safely say that \[{{\omega }^{n}}=\cos \left( n\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( n\left( \dfrac{2\pi }{7} \right) \right)......\left( 3 \right)\]
We are given that $\alpha =\omega +{{\omega }^{2}}+{{\omega }^{4}}$ and $\beta ={{\omega }^{3}}+{{\omega }^{5}}+{{\omega }^{6}}$.
Therefore $\alpha +\beta =\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}$
We can see that this series is in geometric progression with 6 terms, where the first terms as \[~\omega \] and common difference is \[~\omega \].
We know that the sum of n terms of GP is given as ${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$, where a is the first term of the geometric series and r is the common difference of the series.
Hence, $\omega +{{\omega }^{2}}+{{\omega }^{3}}+{{\omega }^{4}}+{{\omega }^{5}}+{{\omega }^{6}}=\dfrac{\omega \left( {{\omega }^{6}}-1 \right)}{\omega -1}$
$\Rightarrow \alpha +\beta =\dfrac{\left( {{\omega }^{7}}-\omega \right)}{\omega -1}$
Now, if we substitute n = 7, \[{{\omega }^{7}}=\cos \left( 7\left( \dfrac{2\pi }{7} \right) \right)+i\sin \left( 7\left( \dfrac{2\pi }{7} \right) \right)\]
\[\Rightarrow {{\omega }^{7}}=1\]
$\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{\left( 1-\omega \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =\dfrac{-1\left( \omega -1 \right)}{\omega -1} \\
& \Rightarrow \alpha +\beta =-1 \\
\end{align}$
So, the correct answer is “Option B”.
Note: In complex numbers, $\cos \theta +i\sin \theta $ is usually represented as ${{e}^{i\theta }}$. Hence, ${{\left( \cos \theta +i\sin \theta \right)}^{2}}={{e}^{2i\theta }}=\cos 2\theta +i\sin 2\theta $. Similarly, if we want to find ${{\left( \cos \theta +i\sin \theta \right)}^{n}}$, it can be directly represented by ${{\left( \cos \theta +i\sin \theta \right)}^{n}}={{e}^{ni\theta }}=\cos n\theta +i\sin n\theta $.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE