
Let $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$. If $\overrightarrow b $ is not parallel to $\overrightarrow c $, then the angle between $\overrightarrow a $ and $\overrightarrow b $ is:
A) $\dfrac{{3\pi }}{4}$
B) $\dfrac{\pi }{2}$
C) $\dfrac{{2\pi }}{3}$
D) $\dfrac{{5\pi }}{6}$
Answer
592.2k+ views
Hint:We are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors, so, $|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$. And we know that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $. This is the theorem. So on further comparing this equation, you will get the answer.
Complete step-by-step answer:
So, according to the question, we are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$.
So from this statement, it is clear that the magnitude of $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are equal to $1$.
$|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$
Or $a = b = c = 1$
A simple magnitude of $\overrightarrow a $ is written as $a$.
As we know that
$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $
And it is given that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$
Let $\theta $ be the angle between $\overrightarrow a $ and $\overrightarrow c $.
Let $\beta $ be the angle between $\overrightarrow a $ and $\overrightarrow b $.
So, $\overrightarrow a .\overrightarrow c = ac\cos \theta $
Where $a = c = 1$
So, $\overrightarrow a .\overrightarrow c = \cos \theta $
Similarly, $\overrightarrow a .\overrightarrow b = ab\cos \beta $
Where $a = b = 1$
So, $\overrightarrow a .\overrightarrow b = \cos \beta $
So we got that
$
\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
\left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
$
Upon comparing both sides, we get
$\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}$
And
$\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}$
So here we assume angle between $\overrightarrow a $ and $\overrightarrow b $ is $\beta $ that is $\dfrac{{5\pi }}{6}$
So, the correct answer is “Option D”.
Note:If $\overrightarrow b $ becomes parallel to $\overrightarrow c $, then, $\overrightarrow b \times \overrightarrow c = 0$. As $bc\sin \theta = \overrightarrow b \times \overrightarrow c $ and $\overrightarrow b ||\overrightarrow c $, so $\theta = 0$. Therefore, $\overrightarrow b \times \overrightarrow c = 0$. And $\left( {\overrightarrow b \times \overrightarrow c } \right)$ vector will be perpendicular to both $\overrightarrow b $ and $\overrightarrow c $. So, if $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are in same plane then $\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0$. As if $\overrightarrow a \bot \overrightarrow b $, then $\overrightarrow a .\overrightarrow b = 0$.
Complete step-by-step answer:
So, according to the question, we are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$.
So from this statement, it is clear that the magnitude of $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are equal to $1$.
$|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$
Or $a = b = c = 1$
A simple magnitude of $\overrightarrow a $ is written as $a$.
As we know that
$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $
And it is given that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$
Let $\theta $ be the angle between $\overrightarrow a $ and $\overrightarrow c $.
Let $\beta $ be the angle between $\overrightarrow a $ and $\overrightarrow b $.
So, $\overrightarrow a .\overrightarrow c = ac\cos \theta $
Where $a = c = 1$
So, $\overrightarrow a .\overrightarrow c = \cos \theta $
Similarly, $\overrightarrow a .\overrightarrow b = ab\cos \beta $
Where $a = b = 1$
So, $\overrightarrow a .\overrightarrow b = \cos \beta $
So we got that
$
\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
\left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
$
Upon comparing both sides, we get
$\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}$
And
$\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}$
So here we assume angle between $\overrightarrow a $ and $\overrightarrow b $ is $\beta $ that is $\dfrac{{5\pi }}{6}$
So, the correct answer is “Option D”.
Note:If $\overrightarrow b $ becomes parallel to $\overrightarrow c $, then, $\overrightarrow b \times \overrightarrow c = 0$. As $bc\sin \theta = \overrightarrow b \times \overrightarrow c $ and $\overrightarrow b ||\overrightarrow c $, so $\theta = 0$. Therefore, $\overrightarrow b \times \overrightarrow c = 0$. And $\left( {\overrightarrow b \times \overrightarrow c } \right)$ vector will be perpendicular to both $\overrightarrow b $ and $\overrightarrow c $. So, if $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are in same plane then $\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0$. As if $\overrightarrow a \bot \overrightarrow b $, then $\overrightarrow a .\overrightarrow b = 0$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

