Answer
Verified
399.9k+ views
Hint: Here, in the question, we are given \[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\] which is the sum to \[n\] terms of a kind of special series. In order to find \[n\] such that \[100{S_n} = n\], we have to simplify \[{S_n}\] in terms of \[n\]. Then using the given equation \[100{S_n} = n\], we can find the value of \[n\].
Formulae used:
\[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], where \[{S_n}\] is the sum of \[n\] terms of the series and \[{a_k}\] is the \[{k^{th}}\] term of the series.
Sum of first \[n\] natural numbers=\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers=\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Let us collect the given information,
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\], and,
\[100{S_n} = n\]
Now, we have, \[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]
Observing carefully the series, we get the \[{k^{th}}\] term of the series as:
\[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
Using identities,
Sum of first \[n\] natural numbers =\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers =\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\], we get,
\[{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}\]
Simplifying it, we get,
\[ \Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}\]
\[ \Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}\]
Now, we have to find the Sum of \[n\] terms, which is \[{S_n}\] from the \[{k^{th}}\] term,
Using the formula \[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], we get
\[{S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)} \]
Expanding this, we get
\[{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}\]
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,
\[{S_n} = 2 - \dfrac{2}{{n + 1}} \\
\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} \]
Given that \[100{S_n} = n\]
Putting the value of \[{S_n}\], we get
\[ 100 \times \dfrac{{2n}}{{n + 1}} = n \\
\Rightarrow 200n = n\left( {n + 1} \right) \\
\Rightarrow n + 1 = 200 \\
\Rightarrow n = 199 \]
Hence, the value of \[n\] is \[199\].
Hence option A. \[199\] is the correct answer.
Note: The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find \[{k^{th}}\] otherwise it would be very hectic to solve. With the help of \[{k^{th}}\] term, we can find \[{S_n}\] easily.
Formulae used:
\[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], where \[{S_n}\] is the sum of \[n\] terms of the series and \[{a_k}\] is the \[{k^{th}}\] term of the series.
Sum of first \[n\] natural numbers=\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers=\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Let us collect the given information,
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\], and,
\[100{S_n} = n\]
Now, we have, \[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
\[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}\]
Observing carefully the series, we get the \[{k^{th}}\] term of the series as:
\[{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}\]
Using identities,
Sum of first \[n\] natural numbers =\[\dfrac{{n\left( {n + 1} \right)}}{2}\]
Sum of the cubes of first \[n\] natural numbers =\[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\], we get,
\[{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}\]
Simplifying it, we get,
\[ \Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}\]
\[ \Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}\]
Now, we have to find the Sum of \[n\] terms, which is \[{S_n}\] from the \[{k^{th}}\] term,
Using the formula \[{S_n} = \sum\limits_{k = 1}^n {{a_k}} \], we get
\[{S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)} \]
Expanding this, we get
\[{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}\]
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,
\[{S_n} = 2 - \dfrac{2}{{n + 1}} \\
\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} \]
Given that \[100{S_n} = n\]
Putting the value of \[{S_n}\], we get
\[ 100 \times \dfrac{{2n}}{{n + 1}} = n \\
\Rightarrow 200n = n\left( {n + 1} \right) \\
\Rightarrow n + 1 = 200 \\
\Rightarrow n = 199 \]
Hence, the value of \[n\] is \[199\].
Hence option A. \[199\] is the correct answer.
Note: The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find \[{k^{th}}\] otherwise it would be very hectic to solve. With the help of \[{k^{th}}\] term, we can find \[{S_n}\] easily.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE