Let triangle ABC have vertices on a circle. Let AD be the altitude and AP be the diameter of the circle. If $\angle ABC={{84}^{\circ }}$ and $\angle BCA={{60}^{\circ }}$ then $\angle DAP $equals to \[\]
A.${{6}^{\circ }}$\[\]
B.${{12}^{\circ }}$\[\]
C.${{18}^{\circ }}$\[\]
D.${{24}^{\circ }}$\[\]
Answer
Verified
457.2k+ views
Hint: We join BP and CP. We use the theorem that the sum of the angles in a triangle is ${{180}^{\circ }}$ in triangles ABD, ACD to get $\angle BAD={{6}^{\circ }},\angle CAD={{30}^{\circ }}$. We use the theorem that an arc of semi-circular length always subtends right angle of measure ${{90}^{\circ }}$ to get $\angle BCP={{30}^{\circ }}$. We use the theorem that angle subtended by the same arc have equal measures to get $\angle BAP={{30}^{\circ }}$ and then we find the required angle $\angle DAP=\angle BAP-\angle BAD$.\[\]
Complete step-by-step solution
We are given in the figure a triangle ABC whose vertices are on a circle. AD is the altitude dropped on the side BC and AP is the diameter of the circle. We are further given the measure of angles $\angle ABC={{84}^{\circ }}$ and $\angle BCA={{60}^{\circ }}$. We are asked to find a measure of $\angle DAP$. Let us join BP and CP and have the figure below.\[\]
Since AD is the altitude we have $\angle ADB=\angle ADC={{90}^{\circ }}$. We know that sum of the angles in a triangle is ${{180}^{\circ }}$. So we have in triangle ADB
\[\begin{align}
& \Rightarrow \angle ADB+\angle ABD+\angle BAD={{180}^{\circ }} \\
& \Rightarrow {{90}^{\circ }}+\angle ABC+\angle BAD={{180}^{\circ }} \\
& \Rightarrow {{90}^{\circ }}+{{84}^{\circ }}+\angle BAD={{180}^{\circ }}\left( \because \text{ given }\angle ABC={{84}^{\circ }} \right) \\
& \Rightarrow {{174}^{\circ }}+\angle BAD={{180}^{\circ }} \\
& \Rightarrow \angle BAD={{6}^{\circ }} \\
\end{align}\]
We also have in triangle ADC,
\[\begin{align}
& \Rightarrow \angle ADC+\angle ACD+\angle CAD={{180}^{\circ }} \\
& \Rightarrow {{90}^{\circ }}+{{60}^{\circ }}+\angle CAD={{180}^{\circ }}\left( \because \angle ACD=\angle ACB={{60}^{\circ }} \right) \\
& \Rightarrow {{150}^{\circ }}+\angle CAD={{180}^{\circ }} \\
& \Rightarrow \angle CAD={{30}^{\circ }} \\
\end{align}\]
We are given that AP is a diameter which means AP divides the circle into two semi-circles. We know that an arc of semi-circular length always subtends the right angle of measure${{90}^{\circ }}$ at any point on the circle. Here the semicircle has subtended $\angle ABP$ and $\angle ACP$ on the points $B,C$ on the circle respectively. So we have,
\[\Rightarrow \angle ABP=\angle ACP={{90}^{\circ }}\]
Then we have
\[\Rightarrow \angle BCP=\angle ACP-\angle ACB={{90}^{\circ }}-{{60}^{\circ }}={{30}^{\circ }}\]
We know that angles subtended by the same arc have equal measures. Here in the circle arc BP subtends angles $\angle BAP,\angle BCP$. So we have,
\[\angle BAP=\angle BCP={{30}^{\circ }}\]
Then we have
$\angle DAP=\angle BAP-\angle BAD={{30}^{\circ }}-{{6}^{\circ }}={{24}^{\circ }}$
So the correct option is D.
Note: We can alternatively solve using the sum of the angles in triangle is ${{180}^{\circ }}$ to get in triangle$\angle BAC={{36}^{\circ }}$. We then join OC and use the theorem that the central angle of an arc is twice the angle subtended on appointing on the circle but not on the arc for the arc AC to get $\angle OAC={{6}^{\circ }}$ and then the required angle $\angle DAP=\angle CAD-\angle OAC$.
Complete step-by-step solution
We are given in the figure a triangle ABC whose vertices are on a circle. AD is the altitude dropped on the side BC and AP is the diameter of the circle. We are further given the measure of angles $\angle ABC={{84}^{\circ }}$ and $\angle BCA={{60}^{\circ }}$. We are asked to find a measure of $\angle DAP$. Let us join BP and CP and have the figure below.\[\]
Since AD is the altitude we have $\angle ADB=\angle ADC={{90}^{\circ }}$. We know that sum of the angles in a triangle is ${{180}^{\circ }}$. So we have in triangle ADB
\[\begin{align}
& \Rightarrow \angle ADB+\angle ABD+\angle BAD={{180}^{\circ }} \\
& \Rightarrow {{90}^{\circ }}+\angle ABC+\angle BAD={{180}^{\circ }} \\
& \Rightarrow {{90}^{\circ }}+{{84}^{\circ }}+\angle BAD={{180}^{\circ }}\left( \because \text{ given }\angle ABC={{84}^{\circ }} \right) \\
& \Rightarrow {{174}^{\circ }}+\angle BAD={{180}^{\circ }} \\
& \Rightarrow \angle BAD={{6}^{\circ }} \\
\end{align}\]
We also have in triangle ADC,
\[\begin{align}
& \Rightarrow \angle ADC+\angle ACD+\angle CAD={{180}^{\circ }} \\
& \Rightarrow {{90}^{\circ }}+{{60}^{\circ }}+\angle CAD={{180}^{\circ }}\left( \because \angle ACD=\angle ACB={{60}^{\circ }} \right) \\
& \Rightarrow {{150}^{\circ }}+\angle CAD={{180}^{\circ }} \\
& \Rightarrow \angle CAD={{30}^{\circ }} \\
\end{align}\]
We are given that AP is a diameter which means AP divides the circle into two semi-circles. We know that an arc of semi-circular length always subtends the right angle of measure${{90}^{\circ }}$ at any point on the circle. Here the semicircle has subtended $\angle ABP$ and $\angle ACP$ on the points $B,C$ on the circle respectively. So we have,
\[\Rightarrow \angle ABP=\angle ACP={{90}^{\circ }}\]
Then we have
\[\Rightarrow \angle BCP=\angle ACP-\angle ACB={{90}^{\circ }}-{{60}^{\circ }}={{30}^{\circ }}\]
We know that angles subtended by the same arc have equal measures. Here in the circle arc BP subtends angles $\angle BAP,\angle BCP$. So we have,
\[\angle BAP=\angle BCP={{30}^{\circ }}\]
Then we have
$\angle DAP=\angle BAP-\angle BAD={{30}^{\circ }}-{{6}^{\circ }}={{24}^{\circ }}$
So the correct option is D.
Note: We can alternatively solve using the sum of the angles in triangle is ${{180}^{\circ }}$ to get in triangle$\angle BAC={{36}^{\circ }}$. We then join OC and use the theorem that the central angle of an arc is twice the angle subtended on appointing on the circle but not on the arc for the arc AC to get $\angle OAC={{6}^{\circ }}$ and then the required angle $\angle DAP=\angle CAD-\angle OAC$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE