Answer
Verified
499.8k+ views
Hint: In order to solve this problem we will use the property commutative, since it is provided that the two matrices are commutative using this data and then equating the two obtained matrices after multiplication and solving to get the asked term you will reach the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE