
Let $ X={{\left( ^{10}{{C}_{1}} \right)}^{2}}+{{\left( ^{10}{{C}_{1}} \right)}^{2}}+3{{\left( ^{10}{{C}_{1}} \right)}^{2}}...+10{{\left( ^{10}{{C}_{1}} \right)}^{2}}$, where $^{10}{{C}_{r}},r=\{1,2,3,...,10\}$ denote binomial coefficients .Then find the value of $\dfrac{1}{1430}X$.
Answer
588.9k+ views
Hint: Convert the given expression to generalized form to apply the standard formula of $^{2n-1}{{C}_{n-1}}$. Then make the given data a specialized case of this to find out the required value.
Complete step-by-step answer:
The given expression can written in generalized form $X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}}=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n}{{C}_{r}} \right)$.
We can replace $^{n}{{C}_{r}}=\dfrac{n}{r}\left( ^{n-1}{{C}_{r-1}} \right)$ . Now the expression transforms to
$\begin{align}
& X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}} \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r}\left( ^{n}{{C}_{r}} \right)\left( ^{n}{{C}_{r}} \right) \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right)\left( \dfrac{n}{r} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
\end{align}$\[\]
We use the fact that $^{n}{{C}_{r}}{{=}^{n}}{{C}_{n-r}}$\[\]
We also know from theory of binomial expansion that $\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right){{=}^{2n-1}}{{C}_{n-1}}$. Putting it in above equation \[\]
$\begin{align}
& X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\left( ^{2n-1}{{C}_{n-1}} \right) \\
\end{align}$\[\]
Now we apply for the special case as asked in the question . So
\[X=10\cdot \left( ^{20-1}{{C}_{10-1}} \right)=10\left( ^{19}{{C}_{10}} \right)\]
We have been asked to find out the value of $\dfrac{1}{1430}X$. So we first factorize 1430 as $1430=10.11.13$. Using this obtained value to substitute in the above equation.
\[\dfrac{1}{1430}X=10\dfrac{19\times 18\times ...11}{9\times 8\times ...2\times 10\times 11\times 13}=646\]
The required value is 646.\[\]
Note: We need to be careful of wrong substitution as it may lead to incorrect results. We need to be also careful of the fact that the question is asking the values of $\dfrac{1}{1430}X$ not $X$. So do not end the solution at $X$ .
Complete step-by-step answer:
The given expression can written in generalized form $X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}}=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n}{{C}_{r}} \right)$.
We can replace $^{n}{{C}_{r}}=\dfrac{n}{r}\left( ^{n-1}{{C}_{r-1}} \right)$ . Now the expression transforms to
$\begin{align}
& X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}} \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r}\left( ^{n}{{C}_{r}} \right)\left( ^{n}{{C}_{r}} \right) \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right)\left( \dfrac{n}{r} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
\end{align}$\[\]
We use the fact that $^{n}{{C}_{r}}{{=}^{n}}{{C}_{n-r}}$\[\]
We also know from theory of binomial expansion that $\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right){{=}^{2n-1}}{{C}_{n-1}}$. Putting it in above equation \[\]
$\begin{align}
& X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\left( ^{2n-1}{{C}_{n-1}} \right) \\
\end{align}$\[\]
Now we apply for the special case as asked in the question . So
\[X=10\cdot \left( ^{20-1}{{C}_{10-1}} \right)=10\left( ^{19}{{C}_{10}} \right)\]
We have been asked to find out the value of $\dfrac{1}{1430}X$. So we first factorize 1430 as $1430=10.11.13$. Using this obtained value to substitute in the above equation.
\[\dfrac{1}{1430}X=10\dfrac{19\times 18\times ...11}{9\times 8\times ...2\times 10\times 11\times 13}=646\]
The required value is 646.\[\]
Note: We need to be careful of wrong substitution as it may lead to incorrect results. We need to be also careful of the fact that the question is asking the values of $\dfrac{1}{1430}X$ not $X$. So do not end the solution at $X$ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

