
Let $y=f\left( x \right)$ be a function defined parametrically by $x=2t-\left| t-1 \right|$and $y=2{{t}^{2}}+t\left| t \right|$ then $f$ is
A. continuous at x=-1
B. continuous at x=2
C. differentiable at x=1
D. not differentiable at x=2
Answer
522k+ views
Hint: First and foremost break x, y in the possible intervals, then gets a relation between them and then find continuity and check differentiability.
Complete step-by-step answer:
In the question, we are given parametric equation of x and y,
$x=2t-\left| t-1 \right|$
$y=2{{t}^{2}}+t\left| t \right|$
Now let’s break or divide the values of x and y in intervals given below,
$\begin{align}
& x=2t-(1-t),t<0 \\
& x=3t-1,t<0 \\
& \\
& x=2t-(1-t),0\le t\le 1 \\
& x=3t-1,0\le t\le 1 \\
& \\
& x=2t-(t-1),t>1 \\
& x=t+1,t>1 \\
& \\
& y=2{{t}^{2}}-{{t}^{2}},t<0 \\
& y={{t}^{2}},t<0 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},0\le t\le 1 \\
& y=3{{t}^{2}},0\le t\le 1 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},t>1 \\
& y=3{{t}^{2}},t>1 \\
\end{align}$
So now considering the intervals we will find the relation of x and y in the above interval,
For $t<0$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y={{t}^{2}}={{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{9} \\
\end{align}$
For $0\le t\le 1$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y=3{{t}^{2}}=3{{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
\end{align}$
For $t>1$,
$\begin{align}
& x=t+1 \\
& \Rightarrow t=x-1 \\
& y=3{{t}^{2}}=3{{\left( x-1 \right)}^{2}} \\
\end{align}$
Now summarizing the equation of y and x,
We get,
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}\] for $x<-1$ (or $t>0$).
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}\] for $-1\le x\le 2$ (or $0\le t\le 1$).
$y=3{{\left( x-1 \right)}^{2}}$ for $x>2$ (or $t>1$).
Now consider the point at $x=-1$.
We will find left hand limit of y,
So,
$\begin{align}
& x=-{{1}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}=0 \\
\end{align}$
So the left hand limit is 0.
We will find right hand limit of y,
So,
$\begin{align}
& x=-{{1}^{+}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=0 \\
\end{align}$
So the right hand limit is 0.
Now consider the point at $x=2$,
We will find Right hand limit of y,
So,
$\begin{align}
& x\to {{2}^{+}} \\
& y=3{{\left( x-1 \right)}^{2}}=3\times {{1}^{2}}=3 \\
\end{align}$
We will find left hand limit of y,
So,
$\begin{align}
& x\to {{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=\dfrac{{{3}^{2}}}{3}=3 \\
\end{align}$
So in the cases of $x=-1$and $x=2$, both the left hand limit and right hand limit are the same.
Here y is continuous at -1 and 2.
At \[x=1\],
We will directly tell that it is continuous and differentiable as it is a polynomial function and unlike the other two points where we had to consider two polynomial functions.
As we already checked the continuity of $x=2$, we will check its left and right hand derivative.
So,
$\begin{align}
& x={{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
& y'=\dfrac{2{{\left( x+1 \right)}^{2}}}{3}=\dfrac{2\left( 2+1 \right)}{3}=2 \\
\end{align}$
Here the left hand derivative is 2.
So, at $x={{2}^{+}}$
$\begin{align}
& y=3{{\left( x-1 \right)}^{2}} \\
& y'=6\left( x-1 \right)=6(2-1)=6 \\
\end{align}$
Here the right hand derivative is 6.
Note: In these types of problems students always have problems finding left hand and right hand derivatives and limits. They make mistakes in left hand limit and right hand limit calculation.
Complete step-by-step answer:
In the question, we are given parametric equation of x and y,
$x=2t-\left| t-1 \right|$
$y=2{{t}^{2}}+t\left| t \right|$
Now let’s break or divide the values of x and y in intervals given below,
$\begin{align}
& x=2t-(1-t),t<0 \\
& x=3t-1,t<0 \\
& \\
& x=2t-(1-t),0\le t\le 1 \\
& x=3t-1,0\le t\le 1 \\
& \\
& x=2t-(t-1),t>1 \\
& x=t+1,t>1 \\
& \\
& y=2{{t}^{2}}-{{t}^{2}},t<0 \\
& y={{t}^{2}},t<0 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},0\le t\le 1 \\
& y=3{{t}^{2}},0\le t\le 1 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},t>1 \\
& y=3{{t}^{2}},t>1 \\
\end{align}$
So now considering the intervals we will find the relation of x and y in the above interval,
For $t<0$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y={{t}^{2}}={{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{9} \\
\end{align}$
For $0\le t\le 1$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y=3{{t}^{2}}=3{{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
\end{align}$
For $t>1$,
$\begin{align}
& x=t+1 \\
& \Rightarrow t=x-1 \\
& y=3{{t}^{2}}=3{{\left( x-1 \right)}^{2}} \\
\end{align}$
Now summarizing the equation of y and x,
We get,
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}\] for $x<-1$ (or $t>0$).
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}\] for $-1\le x\le 2$ (or $0\le t\le 1$).
$y=3{{\left( x-1 \right)}^{2}}$ for $x>2$ (or $t>1$).
Now consider the point at $x=-1$.
We will find left hand limit of y,
So,
$\begin{align}
& x=-{{1}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}=0 \\
\end{align}$
So the left hand limit is 0.
We will find right hand limit of y,
So,
$\begin{align}
& x=-{{1}^{+}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=0 \\
\end{align}$
So the right hand limit is 0.
Now consider the point at $x=2$,
We will find Right hand limit of y,
So,
$\begin{align}
& x\to {{2}^{+}} \\
& y=3{{\left( x-1 \right)}^{2}}=3\times {{1}^{2}}=3 \\
\end{align}$
We will find left hand limit of y,
So,
$\begin{align}
& x\to {{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=\dfrac{{{3}^{2}}}{3}=3 \\
\end{align}$
So in the cases of $x=-1$and $x=2$, both the left hand limit and right hand limit are the same.
Here y is continuous at -1 and 2.
At \[x=1\],
We will directly tell that it is continuous and differentiable as it is a polynomial function and unlike the other two points where we had to consider two polynomial functions.
As we already checked the continuity of $x=2$, we will check its left and right hand derivative.
So,
$\begin{align}
& x={{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
& y'=\dfrac{2{{\left( x+1 \right)}^{2}}}{3}=\dfrac{2\left( 2+1 \right)}{3}=2 \\
\end{align}$
Here the left hand derivative is 2.
So, at $x={{2}^{+}}$
$\begin{align}
& y=3{{\left( x-1 \right)}^{2}} \\
& y'=6\left( x-1 \right)=6(2-1)=6 \\
\end{align}$
Here the right hand derivative is 6.
Note: In these types of problems students always have problems finding left hand and right hand derivatives and limits. They make mistakes in left hand limit and right hand limit calculation.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

Every party in India has to register itself with A class 11 social science CBSE

Describe the effects of the Second World War class 11 social science CBSE

What type of battery is a lead storage battery Write class 11 chemistry CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
