Answer
Verified
501k+ views
Hint: First of all put $z=x+iy$ in $v=\dfrac{1-iz}{z-i}$. Then simplify the v by separating real and imaginary part of it then put $\left| v \right|=1$ to find the value of z.
Complete step-by-step answer:
Here we are given that $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, we have to show that if $\left| v \right|=1$, then z is purely real.
First of all, let us take given expression,
$v=\dfrac{1-iz}{z-i}$
Here we know that $z=x+iy$. By putting the value of z in the above expression, we get;
$\begin{align}
& v=\dfrac{1-i\left( x+iy \right)}{\left( x+iy \right)-i} \\
& or \\
& v=\dfrac{1-ix-{{\left( i \right)}^{2}}y}{x+iy-i} \\
\end{align}$
As we know that i is an imaginary number & $i=\sqrt{-1}$, therefore we get ${{i}^{2}}=-1$
By putting the value of ${{i}^{2}}$ in above expression, we get,
$\begin{align}
& v=\dfrac{1-ix-\left( -1 \right)y}{x+iy-i} \\
& or \\
& v=\dfrac{1-ix+y}{x+iy-i} \\
\end{align}$
By separating real terms and imaginary terms in numerator denominator, we get,
$v=\dfrac{\left( 1+y \right)-ix}{x+i\left( y-1 \right)}$
Now, to rationalise the denominator, we will multiply numerator and denominator of above expression by $x-i\left( y-1 \right)$, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]}{\left[ x+i\left( y-1 \right) \right]}\times \dfrac{\left[ x-i\left( y-1 \right) \right]}{\left[ x-i\left( y-1 \right) \right]}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. By applying this in denominator of above expression, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]\times \left[ x-i\left( y-1 \right) \right]}{\left[ {{\left( x \right)}^{2}}+{{\left( i\left( y-1 \right) \right)}^{2}} \right]}$
By simplifying the above expression, we get,
$v=\dfrac{\left( 1+y \right).x-i\left( y-1 \right)\left( y+1 \right)-ix.x+\left( ix \right)\left( i\left( y-1 \right) \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By further simplifying above expression, we get,
$v=\dfrac{\left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+{{i}^{2}}\left( xy-x \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By putting the value of ${{i}^{2}}=1$ in above expression, we get,
$\begin{align}
& v=\dfrac{\left( x+yx \right)-\left( i \right)\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+\left( -1 \right)\left( xy-x \right)}{\left[ {{x}^{2}}-\left( -1 \right){{\left( y-1 \right)}^{2}} \right]} \\
& v=\dfrac{\left[ \left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}-xy+x \right]}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \\
\end{align}$
By further simplifying the above expression, we get
$v=\dfrac{2x+i\left( -{{y}^{2}}+1-{{x}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
By separating real and imaginary term of above expression, we get,
$v=\dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}+\dfrac{i\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
Now we know that if we have $M=P+iQ$, then $M=\sqrt{{{P}^{2}}+{{Q}^{2}}}$. Using this we get,
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}\]
Also, as we are given that $\left| v \right|=1$, therefore, we get
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}=1\]
By squaring both sides, we get
\[{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}=1\]
By simplifying the above equation, we get,
\[\dfrac{4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}}{{{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}}}=1\]
By cross multiplying the above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
& or \\
& 4{{x}^{2}}+{{\left( 1-\left( {{x}^{2}}+{{y}^{2}} \right) \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
\end{align}\]
As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ by applying this in above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+\left[ 1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right) \right]={{\left[ {{x}^{2}}+{{y}^{2}}+1-2y \right]}^{2}} \\
& =4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left[ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 1-2y \right) \right]}^{2}} \\
\end{align}\]
By applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$in RHS of above equation, we get,
\[=4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}+{{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By cancelling the like terms from LHS and RHS, we get,
\[=4{{x}^{2}}+1-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By simplifying above equation, we get,
\[\Rightarrow 4{{x}^{2}}+1-2{{x}^{2}}-2{{y}^{2}}=1+4{{y}^{2}}-4y+2\left( {{x}^{2}}+{{y}^{2}}-2{{x}^{2}}y-2{{y}^{3}} \right)\]
By rearranging the terms, we get,
\[\begin{align}
& \Rightarrow \left( 4{{x}^{2}}-2{{x}^{2}} \right)+1-2{{y}^{2}}=1+\left[ 4{{y}^{2}}+2{{y}^{2}} \right]+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& \Rightarrow 2{{x}^{2}}+1-2{{y}^{2}}=1+6{{y}^{2}}+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
\end{align}\]
By cancelling the like terms, we get,
$\begin{align}
& \Rightarrow -2{{y}^{2}}=6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& or\ 6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}+2{{y}^{2}}=0 \\
& or\ 8{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}=0 \\
\end{align}$
By taking – 4y common, we get,
$-4y\left[ -2y+1+{{x}^{2}}+{{y}^{2}} \right]=0$
We can also write it as;
$-4y\left[ \left( {{y}^{2}}-2y+1 \right)+{{x}^{2}} \right]=0$
Here we can write $\left( {{y}^{2}}-2y+1 \right)={{\left( y-1 \right)}^{2}}$, therefore we get,
$-4y\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]=0$
As we can see that $\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]$ cannot be zero as they are always positive due to square, therefore we get,
$\begin{align}
& -4y=0 \\
& or\ y=0 \\
\end{align}$
Now, we know that $z=x+iy$
By putting y = 0, we get,
z = x
As z does not contain iota or i and contain only real number x, therefore it is purely real.
Hence, we have shown that z is purely real if $\left| v \right|=1$ where $v=\dfrac{1-iz}{z-i}$.
Note: Students must cross check every equation while solving the question because students often leave one or other term and get the wrong answer. Also student can cross check their answer by putting the value of z = x in expression for v and check if $\left| v \right|=1$ or not.
Complete step-by-step answer:
Here we are given that $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, we have to show that if $\left| v \right|=1$, then z is purely real.
First of all, let us take given expression,
$v=\dfrac{1-iz}{z-i}$
Here we know that $z=x+iy$. By putting the value of z in the above expression, we get;
$\begin{align}
& v=\dfrac{1-i\left( x+iy \right)}{\left( x+iy \right)-i} \\
& or \\
& v=\dfrac{1-ix-{{\left( i \right)}^{2}}y}{x+iy-i} \\
\end{align}$
As we know that i is an imaginary number & $i=\sqrt{-1}$, therefore we get ${{i}^{2}}=-1$
By putting the value of ${{i}^{2}}$ in above expression, we get,
$\begin{align}
& v=\dfrac{1-ix-\left( -1 \right)y}{x+iy-i} \\
& or \\
& v=\dfrac{1-ix+y}{x+iy-i} \\
\end{align}$
By separating real terms and imaginary terms in numerator denominator, we get,
$v=\dfrac{\left( 1+y \right)-ix}{x+i\left( y-1 \right)}$
Now, to rationalise the denominator, we will multiply numerator and denominator of above expression by $x-i\left( y-1 \right)$, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]}{\left[ x+i\left( y-1 \right) \right]}\times \dfrac{\left[ x-i\left( y-1 \right) \right]}{\left[ x-i\left( y-1 \right) \right]}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. By applying this in denominator of above expression, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]\times \left[ x-i\left( y-1 \right) \right]}{\left[ {{\left( x \right)}^{2}}+{{\left( i\left( y-1 \right) \right)}^{2}} \right]}$
By simplifying the above expression, we get,
$v=\dfrac{\left( 1+y \right).x-i\left( y-1 \right)\left( y+1 \right)-ix.x+\left( ix \right)\left( i\left( y-1 \right) \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By further simplifying above expression, we get,
$v=\dfrac{\left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+{{i}^{2}}\left( xy-x \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By putting the value of ${{i}^{2}}=1$ in above expression, we get,
$\begin{align}
& v=\dfrac{\left( x+yx \right)-\left( i \right)\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+\left( -1 \right)\left( xy-x \right)}{\left[ {{x}^{2}}-\left( -1 \right){{\left( y-1 \right)}^{2}} \right]} \\
& v=\dfrac{\left[ \left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}-xy+x \right]}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \\
\end{align}$
By further simplifying the above expression, we get
$v=\dfrac{2x+i\left( -{{y}^{2}}+1-{{x}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
By separating real and imaginary term of above expression, we get,
$v=\dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}+\dfrac{i\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
Now we know that if we have $M=P+iQ$, then $M=\sqrt{{{P}^{2}}+{{Q}^{2}}}$. Using this we get,
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}\]
Also, as we are given that $\left| v \right|=1$, therefore, we get
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}=1\]
By squaring both sides, we get
\[{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}=1\]
By simplifying the above equation, we get,
\[\dfrac{4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}}{{{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}}}=1\]
By cross multiplying the above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
& or \\
& 4{{x}^{2}}+{{\left( 1-\left( {{x}^{2}}+{{y}^{2}} \right) \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
\end{align}\]
As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ by applying this in above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+\left[ 1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right) \right]={{\left[ {{x}^{2}}+{{y}^{2}}+1-2y \right]}^{2}} \\
& =4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left[ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 1-2y \right) \right]}^{2}} \\
\end{align}\]
By applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$in RHS of above equation, we get,
\[=4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}+{{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By cancelling the like terms from LHS and RHS, we get,
\[=4{{x}^{2}}+1-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By simplifying above equation, we get,
\[\Rightarrow 4{{x}^{2}}+1-2{{x}^{2}}-2{{y}^{2}}=1+4{{y}^{2}}-4y+2\left( {{x}^{2}}+{{y}^{2}}-2{{x}^{2}}y-2{{y}^{3}} \right)\]
By rearranging the terms, we get,
\[\begin{align}
& \Rightarrow \left( 4{{x}^{2}}-2{{x}^{2}} \right)+1-2{{y}^{2}}=1+\left[ 4{{y}^{2}}+2{{y}^{2}} \right]+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& \Rightarrow 2{{x}^{2}}+1-2{{y}^{2}}=1+6{{y}^{2}}+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
\end{align}\]
By cancelling the like terms, we get,
$\begin{align}
& \Rightarrow -2{{y}^{2}}=6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& or\ 6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}+2{{y}^{2}}=0 \\
& or\ 8{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}=0 \\
\end{align}$
By taking – 4y common, we get,
$-4y\left[ -2y+1+{{x}^{2}}+{{y}^{2}} \right]=0$
We can also write it as;
$-4y\left[ \left( {{y}^{2}}-2y+1 \right)+{{x}^{2}} \right]=0$
Here we can write $\left( {{y}^{2}}-2y+1 \right)={{\left( y-1 \right)}^{2}}$, therefore we get,
$-4y\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]=0$
As we can see that $\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]$ cannot be zero as they are always positive due to square, therefore we get,
$\begin{align}
& -4y=0 \\
& or\ y=0 \\
\end{align}$
Now, we know that $z=x+iy$
By putting y = 0, we get,
z = x
As z does not contain iota or i and contain only real number x, therefore it is purely real.
Hence, we have shown that z is purely real if $\left| v \right|=1$ where $v=\dfrac{1-iz}{z-i}$.
Note: Students must cross check every equation while solving the question because students often leave one or other term and get the wrong answer. Also student can cross check their answer by putting the value of z = x in expression for v and check if $\left| v \right|=1$ or not.
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE