
Let$f(x)$ be a polynomial with positive degree satisfying the relation $f(x)f(y)=f(x)+f(y)+f(xy)-2$
For all real x and y. Suppose$f(4)=65$ Then
(A) ${{f}^{'}}(x)$ is a polynomial of degree two
(B) roots of equation ${{f}^{'}}(x)=2x+1$ are real
(C) $x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
(D) ${{f}^{'}}(-1)=3$
Answer
232.5k+ views
Hint: First convert the equation in one form and assume$y=\dfrac{1}{x}$and solve it further.
Complete step-by-step answer:
Let $f(x)$ is a polynomial satisfying,
$f(x)f(y)=f(x)+f(y)+f(xy)-2$…….. (1)
Now Let us consider $y=\dfrac{1}{x}$…….(2)
Now let us substitute (2) in (1) we get,
$f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2$……….. (3)
Let us take $x=1$ So substituting the value of $x$ in (3),
So we get ,
$\Rightarrow$ $f{{(1)}^{2}}=3f(1)-2$
Simplifying we get,
$\begin{align}
& f{{(1)}^{2}}-3f(1)+2=0 \\
& f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\
& f(1)(f(1)-2)-(f(1)-2)=0 \\
& (f(1)-1)(f(1)-2)=0 \\
\end{align}$
So by solving we get two values for$f(1)$,
So the values for$f(1)$ are as follows,
$f(1)=1,2$…………… (4)
Let us take $y=1$and substituting in (1),
So we get,
$\Rightarrow$ $f(x)f(1)=f(x)+f(1)+f(x)-2$
$\Rightarrow$ $f(x)f(1)=2f(x)+f(1)-2$
So rearranging the equation we get,
$\Rightarrow$ $(f(x)-1)(f(1)-2)=0$
So here $f(x)\ne 1$ and we can say that$f(1)=2$…………..(5)
So from equation (4) and (5) we get to know that $f(1)=2$,
So substituting $f(1)=2$in (3) we get,
So we get,
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2$
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)$
So $f(x)$ is a polynomial function, let us consider it as,
$\Rightarrow$ $f(x)=\pm {{x}^{n}}+1$
$\Rightarrow$ $f(4)=\pm {{4}^{n}}+1=65$………….( Given in question that $f(4)=65$)
$\begin{align}
& \pm {{4}^{n}}=64 \\
& \pm {{4}^{n}}={{4}^{3}} \\
\end{align}$……………… (as we know${{4}^{3}}=64$so writing${{4}^{3}}$instead of$64$)
So we get the value of $n$ as $3$,
So we get$f(x)$as,
$f(x)={{x}^{3}}+1$
So differentiating $f(x)$ We get,
So we get${{f}^{'}}(x)$as,
${{f}^{'}}(x)=3{{x}^{2}}$
So considering option (A),
${{f}^{'}}(x)=3{{x}^{2}}$
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned that${{f}^{'}}(x)$ is Real ,
So${{f}^{'}}(x)=3{{x}^{2}}$ so it is real, if we put any value we will get ${{f}^{'}}(x)$as real.
So option (B) is correct.
Now considering Option (C) We get
$x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
Let us take $x=1$
We get LHS$=$RHS
Option (C) is also correct.
For Option (D) it is given that${{f}^{'}}(-1)=3$
So we have found${{f}^{'}}(x)$above
So${{f}^{'}}(x)=3{{x}^{2}}$
So Substituting $x=-1$ in${{f}^{'}}(x)$ We get,
${{f}^{'}}(-1)=3$
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.
Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used $y=\dfrac{1}{x}$. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this one$f(x)=\pm {{x}^{n}}+1$.
Complete step-by-step answer:
Let $f(x)$ is a polynomial satisfying,
$f(x)f(y)=f(x)+f(y)+f(xy)-2$…….. (1)
Now Let us consider $y=\dfrac{1}{x}$…….(2)
Now let us substitute (2) in (1) we get,
$f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+f(1)-2$……….. (3)
Let us take $x=1$ So substituting the value of $x$ in (3),
So we get ,
$\Rightarrow$ $f{{(1)}^{2}}=3f(1)-2$
Simplifying we get,
$\begin{align}
& f{{(1)}^{2}}-3f(1)+2=0 \\
& f{{(1)}^{2}}-2f(1)-f(1)+2=0 \\
& f(1)(f(1)-2)-(f(1)-2)=0 \\
& (f(1)-1)(f(1)-2)=0 \\
\end{align}$
So by solving we get two values for$f(1)$,
So the values for$f(1)$ are as follows,
$f(1)=1,2$…………… (4)
Let us take $y=1$and substituting in (1),
So we get,
$\Rightarrow$ $f(x)f(1)=f(x)+f(1)+f(x)-2$
$\Rightarrow$ $f(x)f(1)=2f(x)+f(1)-2$
So rearranging the equation we get,
$\Rightarrow$ $(f(x)-1)(f(1)-2)=0$
So here $f(x)\ne 1$ and we can say that$f(1)=2$…………..(5)
So from equation (4) and (5) we get to know that $f(1)=2$,
So substituting $f(1)=2$in (3) we get,
So we get,
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)+2-2$
$\Rightarrow$ $f(x)f\left( \dfrac{1}{x} \right)=f(x)+f\left( \dfrac{1}{x} \right)$
So $f(x)$ is a polynomial function, let us consider it as,
$\Rightarrow$ $f(x)=\pm {{x}^{n}}+1$
$\Rightarrow$ $f(4)=\pm {{4}^{n}}+1=65$………….( Given in question that $f(4)=65$)
$\begin{align}
& \pm {{4}^{n}}=64 \\
& \pm {{4}^{n}}={{4}^{3}} \\
\end{align}$……………… (as we know${{4}^{3}}=64$so writing${{4}^{3}}$instead of$64$)
So we get the value of $n$ as $3$,
So we get$f(x)$as,
$f(x)={{x}^{3}}+1$
So differentiating $f(x)$ We get,
So we get${{f}^{'}}(x)$as,
${{f}^{'}}(x)=3{{x}^{2}}$
So considering option (A),
${{f}^{'}}(x)=3{{x}^{2}}$
So it has a polynomial of degree two. Option (A) is correct,
Now for option (B) it is mentioned that${{f}^{'}}(x)$ is Real ,
So${{f}^{'}}(x)=3{{x}^{2}}$ so it is real, if we put any value we will get ${{f}^{'}}(x)$as real.
So option (B) is correct.
Now considering Option (C) We get
$x{{f}^{'}}(x)=3\left[ f(x)-1 \right]$
Let us take $x=1$
We get LHS$=$RHS
Option (C) is also correct.
For Option (D) it is given that${{f}^{'}}(-1)=3$
So we have found${{f}^{'}}(x)$above
So${{f}^{'}}(x)=3{{x}^{2}}$
So Substituting $x=-1$ in${{f}^{'}}(x)$ We get,
${{f}^{'}}(-1)=3$
Hence Option (D) is also correct.
So here all options are correct.
Option (A), (B), (C) and (D) are correct.
Note: While solving be careful of what you are supposed to substitute. Also don’t jumble yourself and use proper signs and assumptions. Use the polynomial as given in question. Use proper substitution as we had used $y=\dfrac{1}{x}$. So be careful about solving all the options and proving it right or wrong. You should not make a mistake at simplifying this one$f(x)=\pm {{x}^{n}}+1$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

