Answer
Verified
481.2k+ views
Hint: First of all we will find the incident energy of light by using the formula, ${{E}_{i}}=\dfrac{hc}{\lambda }$ and then we will convert it into electron volt i.e. ${{E}_{v}}$. Then, we will find the maximum kinetic energy of the proton emitted by taking the difference of energy of electron volt and photoelectric function.
Formula used: ${{E}_{i}}=\dfrac{hc}{\lambda }$
Complete step-by-step answer:
In the question we are given that light of wavelength $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$ falls on a sensitive plate with photoelectric work function of $1.9eV$, so first of all we will find the energy of the light by using the formula,
${{E}_{i}}=\dfrac{hc}{\lambda }$ …………………(i)
Where, $\lambda $ is the wavelength of the light, c is velocity if light and h is the plank constant.
Now, in question it is given that wavelength of light is $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$and in order to find the incident energy in terms of electron volt the value of $hc$ can be given as 12375. So, on substituting the values in equation (i) we will get,
${{E}_{i\left( eV \right)}}=\dfrac{hc}{\lambda }=\dfrac{12375}{5000\times {{10}^{-10}}}=2.475eV$
Now, we will find the maximum kinetic energy emitted by the proton by taking the difference of electron energy and proton energy as,
${{\alpha }_{\max }}={{E}_{i\left( eV \right)}}-\varphi $
${{\alpha }_{\max }}=2.475-1.9=0.575eV\cong 0.58eV$.
Thus, maximum kinetic energy can be given as $0.58eV$.
Hence, option (a) is the correct answer.
Note: Students might forget to convert the incident energy into electron volt energy and due to that they might not get the desired answer. Students should also know the values of Planck’s constant and velocity of light to convert it into electron volt energy.
Formula used: ${{E}_{i}}=\dfrac{hc}{\lambda }$
Complete step-by-step answer:
In the question we are given that light of wavelength $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$ falls on a sensitive plate with photoelectric work function of $1.9eV$, so first of all we will find the energy of the light by using the formula,
${{E}_{i}}=\dfrac{hc}{\lambda }$ …………………(i)
Where, $\lambda $ is the wavelength of the light, c is velocity if light and h is the plank constant.
Now, in question it is given that wavelength of light is $5000\overset{{}^\circ }{\mathop{\text{A}}}\,$and in order to find the incident energy in terms of electron volt the value of $hc$ can be given as 12375. So, on substituting the values in equation (i) we will get,
${{E}_{i\left( eV \right)}}=\dfrac{hc}{\lambda }=\dfrac{12375}{5000\times {{10}^{-10}}}=2.475eV$
Now, we will find the maximum kinetic energy emitted by the proton by taking the difference of electron energy and proton energy as,
${{\alpha }_{\max }}={{E}_{i\left( eV \right)}}-\varphi $
${{\alpha }_{\max }}=2.475-1.9=0.575eV\cong 0.58eV$.
Thus, maximum kinetic energy can be given as $0.58eV$.
Hence, option (a) is the correct answer.
Note: Students might forget to convert the incident energy into electron volt energy and due to that they might not get the desired answer. Students should also know the values of Planck’s constant and velocity of light to convert it into electron volt energy.
Recently Updated Pages
Points A and B are situated along the extended axis class 12 physics JEE_Main
Two identical pn junctions may be connected in series class 12 physics JEE_Main
A piece of copper and another of germanium are cooled class 12 physics JEE_Main
A piece of semiconductor is connected in series in class 12 phy sec 1 JEE_Main
In a pn junction diode not connected to any circui class 12 physics JEE_Main
The width of depletion region in a pn junction is 500 class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE