Answer
Verified
449.4k+ views
Hint: We can identify the given numbers as rational numbers. If $a$ and $b$ are rational numbers, then $\dfrac{{a + b}}{2}$ is also a rational number. So using this idea we can find any number of rational numbers between them.
Complete step-by-step solution:
We are given two numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
We are asked to find five rational numbers in between them.
A rational number is a number which can be written in the form $\dfrac{p}{q}$, where $p$ and $q$ are integers with no common factors and $q \ne 0$.
Now we can see that the given numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ satisfy these conditions and so they are rational numbers.
Since one of the numbers is positive and other is negative, $0$ lies in between them. Clearly $0$ is a rational number and can be written as $\dfrac{0}{1}$.
So we can write one of the rational numbers between the given numbers as $0$.
We know if $a$ and $b$ are rational numbers, then $\dfrac{{a + b}}{2}$ is also a rational number. And also $\dfrac{{a + b}}{2}$ lies in between the numbers $a$ and $b$.
Using this fact, we can find the rational numbers between the given numbers.
Consider, $ - \dfrac{1}{2},0$ and $0,\dfrac{2}{3}$.
$ - \dfrac{1}{2}$ and $0$ are rational implies, $\dfrac{{ - \dfrac{1}{2} + 0}}{2} = - \dfrac{1}{4}$ is a rational number.
$\dfrac{2}{3}$ and $0$ are rational implies, $\dfrac{{\dfrac{2}{3} + 0}}{2} = \dfrac{2}{6} = \dfrac{1}{3}$ is a rational number.
So we got two rational numbers $ - \dfrac{1}{4}$ and $\dfrac{1}{3}$ between the given numbers.
Now consider $ - \dfrac{1}{4},0$ and $0,\dfrac{1}{3}$.
Again using the same logic we can see $\dfrac{{0 - \dfrac{1}{4}}}{2} = - \dfrac{1}{8}$ and $\dfrac{{0 + \dfrac{1}{3}}}{2} = \dfrac{1}{6}$ and this gives $ - \dfrac{1}{8}$ and $\dfrac{1}{6}$ as rational numbers between the given numbers.
Thus we get five rational numbers between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$. They are $ - \dfrac{1}{8}, - \dfrac{1}{4},0,\dfrac{1}{6},\dfrac{1}{3}$.
Note: Here we found the first number as $0$. We can also start from the given numbers and take the mean.
$ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ are rational numbers implies $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2}$ is also a rational number.
And $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2} = \dfrac{{\dfrac{{4 - 3}}{6}}}{2} = \dfrac{1}{{12}}$
This gives $\dfrac{1}{{12}}$ is a rational number between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
And we can continue the process. But we chose $0$ to make the calculation easier.
Complete step-by-step solution:
We are given two numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
We are asked to find five rational numbers in between them.
A rational number is a number which can be written in the form $\dfrac{p}{q}$, where $p$ and $q$ are integers with no common factors and $q \ne 0$.
Now we can see that the given numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ satisfy these conditions and so they are rational numbers.
Since one of the numbers is positive and other is negative, $0$ lies in between them. Clearly $0$ is a rational number and can be written as $\dfrac{0}{1}$.
So we can write one of the rational numbers between the given numbers as $0$.
We know if $a$ and $b$ are rational numbers, then $\dfrac{{a + b}}{2}$ is also a rational number. And also $\dfrac{{a + b}}{2}$ lies in between the numbers $a$ and $b$.
Using this fact, we can find the rational numbers between the given numbers.
Consider, $ - \dfrac{1}{2},0$ and $0,\dfrac{2}{3}$.
$ - \dfrac{1}{2}$ and $0$ are rational implies, $\dfrac{{ - \dfrac{1}{2} + 0}}{2} = - \dfrac{1}{4}$ is a rational number.
$\dfrac{2}{3}$ and $0$ are rational implies, $\dfrac{{\dfrac{2}{3} + 0}}{2} = \dfrac{2}{6} = \dfrac{1}{3}$ is a rational number.
So we got two rational numbers $ - \dfrac{1}{4}$ and $\dfrac{1}{3}$ between the given numbers.
Now consider $ - \dfrac{1}{4},0$ and $0,\dfrac{1}{3}$.
Again using the same logic we can see $\dfrac{{0 - \dfrac{1}{4}}}{2} = - \dfrac{1}{8}$ and $\dfrac{{0 + \dfrac{1}{3}}}{2} = \dfrac{1}{6}$ and this gives $ - \dfrac{1}{8}$ and $\dfrac{1}{6}$ as rational numbers between the given numbers.
Thus we get five rational numbers between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$. They are $ - \dfrac{1}{8}, - \dfrac{1}{4},0,\dfrac{1}{6},\dfrac{1}{3}$.
Note: Here we found the first number as $0$. We can also start from the given numbers and take the mean.
$ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ are rational numbers implies $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2}$ is also a rational number.
And $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2} = \dfrac{{\dfrac{{4 - 3}}{6}}}{2} = \dfrac{1}{{12}}$
This gives $\dfrac{1}{{12}}$ is a rational number between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
And we can continue the process. But we chose $0$ to make the calculation easier.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE