List five rational numbers between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
Answer
Verified
463.2k+ views
Hint: We can identify the given numbers as rational numbers. If $a$ and $b$ are rational numbers, then $\dfrac{{a + b}}{2}$ is also a rational number. So using this idea we can find any number of rational numbers between them.
Complete step-by-step solution:
We are given two numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
We are asked to find five rational numbers in between them.
A rational number is a number which can be written in the form $\dfrac{p}{q}$, where $p$ and $q$ are integers with no common factors and $q \ne 0$.
Now we can see that the given numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ satisfy these conditions and so they are rational numbers.
Since one of the numbers is positive and other is negative, $0$ lies in between them. Clearly $0$ is a rational number and can be written as $\dfrac{0}{1}$.
So we can write one of the rational numbers between the given numbers as $0$.
We know if $a$ and $b$ are rational numbers, then $\dfrac{{a + b}}{2}$ is also a rational number. And also $\dfrac{{a + b}}{2}$ lies in between the numbers $a$ and $b$.
Using this fact, we can find the rational numbers between the given numbers.
Consider, $ - \dfrac{1}{2},0$ and $0,\dfrac{2}{3}$.
$ - \dfrac{1}{2}$ and $0$ are rational implies, $\dfrac{{ - \dfrac{1}{2} + 0}}{2} = - \dfrac{1}{4}$ is a rational number.
$\dfrac{2}{3}$ and $0$ are rational implies, $\dfrac{{\dfrac{2}{3} + 0}}{2} = \dfrac{2}{6} = \dfrac{1}{3}$ is a rational number.
So we got two rational numbers $ - \dfrac{1}{4}$ and $\dfrac{1}{3}$ between the given numbers.
Now consider $ - \dfrac{1}{4},0$ and $0,\dfrac{1}{3}$.
Again using the same logic we can see $\dfrac{{0 - \dfrac{1}{4}}}{2} = - \dfrac{1}{8}$ and $\dfrac{{0 + \dfrac{1}{3}}}{2} = \dfrac{1}{6}$ and this gives $ - \dfrac{1}{8}$ and $\dfrac{1}{6}$ as rational numbers between the given numbers.
Thus we get five rational numbers between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$. They are $ - \dfrac{1}{8}, - \dfrac{1}{4},0,\dfrac{1}{6},\dfrac{1}{3}$.
Note: Here we found the first number as $0$. We can also start from the given numbers and take the mean.
$ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ are rational numbers implies $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2}$ is also a rational number.
And $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2} = \dfrac{{\dfrac{{4 - 3}}{6}}}{2} = \dfrac{1}{{12}}$
This gives $\dfrac{1}{{12}}$ is a rational number between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
And we can continue the process. But we chose $0$ to make the calculation easier.
Complete step-by-step solution:
We are given two numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
We are asked to find five rational numbers in between them.
A rational number is a number which can be written in the form $\dfrac{p}{q}$, where $p$ and $q$ are integers with no common factors and $q \ne 0$.
Now we can see that the given numbers $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ satisfy these conditions and so they are rational numbers.
Since one of the numbers is positive and other is negative, $0$ lies in between them. Clearly $0$ is a rational number and can be written as $\dfrac{0}{1}$.
So we can write one of the rational numbers between the given numbers as $0$.
We know if $a$ and $b$ are rational numbers, then $\dfrac{{a + b}}{2}$ is also a rational number. And also $\dfrac{{a + b}}{2}$ lies in between the numbers $a$ and $b$.
Using this fact, we can find the rational numbers between the given numbers.
Consider, $ - \dfrac{1}{2},0$ and $0,\dfrac{2}{3}$.
$ - \dfrac{1}{2}$ and $0$ are rational implies, $\dfrac{{ - \dfrac{1}{2} + 0}}{2} = - \dfrac{1}{4}$ is a rational number.
$\dfrac{2}{3}$ and $0$ are rational implies, $\dfrac{{\dfrac{2}{3} + 0}}{2} = \dfrac{2}{6} = \dfrac{1}{3}$ is a rational number.
So we got two rational numbers $ - \dfrac{1}{4}$ and $\dfrac{1}{3}$ between the given numbers.
Now consider $ - \dfrac{1}{4},0$ and $0,\dfrac{1}{3}$.
Again using the same logic we can see $\dfrac{{0 - \dfrac{1}{4}}}{2} = - \dfrac{1}{8}$ and $\dfrac{{0 + \dfrac{1}{3}}}{2} = \dfrac{1}{6}$ and this gives $ - \dfrac{1}{8}$ and $\dfrac{1}{6}$ as rational numbers between the given numbers.
Thus we get five rational numbers between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$. They are $ - \dfrac{1}{8}, - \dfrac{1}{4},0,\dfrac{1}{6},\dfrac{1}{3}$.
Note: Here we found the first number as $0$. We can also start from the given numbers and take the mean.
$ - \dfrac{1}{2}$ and $\dfrac{2}{3}$ are rational numbers implies $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2}$ is also a rational number.
And $\dfrac{{ - \dfrac{1}{2} + \dfrac{2}{3}}}{2} = \dfrac{{\dfrac{{4 - 3}}{6}}}{2} = \dfrac{1}{{12}}$
This gives $\dfrac{1}{{12}}$ is a rational number between $ - \dfrac{1}{2}$ and $\dfrac{2}{3}$.
And we can continue the process. But we chose $0$ to make the calculation easier.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science