M is a set of six consecutive even integers. When the least three integers of set $M$ are summed, the result is $x$. When the greatest three integers of set $M$ are summed, the result is $y$. Mark the true \[\]equation.
A.$y=x-18$\[\]
B.$y=x+18$\[\]
C.$y=2x$\[\]
D.$y=2x+4$\[\]
Answer
Verified
463.5k+ views
Hint: We denote the six even consecutive integers from the set $M$ in ascending order as$n,n+2,n+4,n+6,n+8,n+10$. We add the first three integers and equate to $x$ as given in the question and express $n$ in terms of $x$. We add the latter three integers and equate to $y$as given in the question. We put $n$ in terms of $x$ and simplify to obtain the equation. \[\]
Complete step-by-step solution
We are given in the question that $M$ is a set of six consecutive even integers. We know that even integers are multiples of 2 and two consecutive even integers will have a difference of 2. If we denote an arbitrary even number as $n$, then we can represent the next 5 consecutive even integers in ascending order can be written as $n+2,n+4,n+6,n+6,n+10$. So the set $M$ can be written in listed form as,
\[M=\left\{ n,n+2,n+4,n+6,n+8,n+10 \right\}\]
We are also given the question that the least three integers of set $M$ are summed, the result is $x$. The least three integers are$n,n+2,n+4$. So we have,
\[\begin{align}
& n+n+2+n+4=x \\
& \Rightarrow 3n+6=x \\
& \Rightarrow n=\dfrac{x-6}{3}.......\left( 1 \right) \\
\end{align}\]
We are further given the question that when the greatest three integers of set $M$ are summed, the result is $y$.The greatest three integers in the set $M$ are$n+4,n+6,n+10$. So we have,
\[\begin{align}
& n+4+n+6+n+10=y \\
& \Rightarrow 3n+20=y \\
\end{align}\]
We put $n=\dfrac{x-6}{3}$ obtained from (1) in the above step to have,
\[\begin{align}
& \Rightarrow 3\dfrac{x-6}{3}+24=y \\
& \Rightarrow x-6+24=y \\
& \Rightarrow y=x+18 \\
\end{align}\]
The above equation is the required equation and hence the correct option is B.
Note: The obtained equation is a linear equation in two variables whose standard form is $ax+by=c$ where $a,b,c$ are real numbers and $a\ne 0,b\ne 0$. There are infinite solutions for one linear equation and we can get integral solutions only when the greatest common divisor of $a,b$ exactly divides $c$. That linear equation is called Diophantine equation.
Complete step-by-step solution
We are given in the question that $M$ is a set of six consecutive even integers. We know that even integers are multiples of 2 and two consecutive even integers will have a difference of 2. If we denote an arbitrary even number as $n$, then we can represent the next 5 consecutive even integers in ascending order can be written as $n+2,n+4,n+6,n+6,n+10$. So the set $M$ can be written in listed form as,
\[M=\left\{ n,n+2,n+4,n+6,n+8,n+10 \right\}\]
We are also given the question that the least three integers of set $M$ are summed, the result is $x$. The least three integers are$n,n+2,n+4$. So we have,
\[\begin{align}
& n+n+2+n+4=x \\
& \Rightarrow 3n+6=x \\
& \Rightarrow n=\dfrac{x-6}{3}.......\left( 1 \right) \\
\end{align}\]
We are further given the question that when the greatest three integers of set $M$ are summed, the result is $y$.The greatest three integers in the set $M$ are$n+4,n+6,n+10$. So we have,
\[\begin{align}
& n+4+n+6+n+10=y \\
& \Rightarrow 3n+20=y \\
\end{align}\]
We put $n=\dfrac{x-6}{3}$ obtained from (1) in the above step to have,
\[\begin{align}
& \Rightarrow 3\dfrac{x-6}{3}+24=y \\
& \Rightarrow x-6+24=y \\
& \Rightarrow y=x+18 \\
\end{align}\]
The above equation is the required equation and hence the correct option is B.
Note: The obtained equation is a linear equation in two variables whose standard form is $ax+by=c$ where $a,b,c$ are real numbers and $a\ne 0,b\ne 0$. There are infinite solutions for one linear equation and we can get integral solutions only when the greatest common divisor of $a,b$ exactly divides $c$. That linear equation is called Diophantine equation.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE