Answer
Verified
384.3k+ views
Hint: We first assume the length of a side at present and find its area. Then we enlarge the sides and find the area of the rectangle garden. We take the difference as 19. We solve the algebraic equation to get the solution of the variable.
Complete step by step answer:
Madhu’s flower garden is now a square. If she enlarges it by increasing the width 1 metre and the length 3 metres, the area will be 19 square metres more than the present area.Madhu’s garden changes from the shape of a square to a rectangle.Let us assume the side length for the square garden was $a$ meters.So, the area was $a\times a={{a}^{2}}$ square meters.
The dimensions change to length being $a+3$ meters and width being $a+1$ meters. So, the area was $\left( a+3 \right)\times \left( a+1 \right)={{a}^{2}}+4a+3$ square meters.The difference is 19 square metres. Therefore, the equation becomes
$\left( {{a}^{2}}+4a+3 \right)-{{a}^{2}}=19$.
Simplifying the equation, we get
$\left( {{a}^{2}}+4a+3 \right)-{{a}^{2}}=19 \\
\Rightarrow {{a}^{2}}+4a+3-{{a}^{2}}=4a+3=19 \\
\Rightarrow 4a=19-3=16 \\
\therefore a=\dfrac{16}{4}=4 \\ $
Therefore, the length of a side of the present square garden is 4 metres.
Note: We can see the enlargement of the sides increases the area of the square to the area of the rectangle. The formula for the area in both cases is the multiplication of the consecutive sides. In the case of squares, the sides are equal and that’s why the area is the square of the side length.
Complete step by step answer:
Madhu’s flower garden is now a square. If she enlarges it by increasing the width 1 metre and the length 3 metres, the area will be 19 square metres more than the present area.Madhu’s garden changes from the shape of a square to a rectangle.Let us assume the side length for the square garden was $a$ meters.So, the area was $a\times a={{a}^{2}}$ square meters.
The dimensions change to length being $a+3$ meters and width being $a+1$ meters. So, the area was $\left( a+3 \right)\times \left( a+1 \right)={{a}^{2}}+4a+3$ square meters.The difference is 19 square metres. Therefore, the equation becomes
$\left( {{a}^{2}}+4a+3 \right)-{{a}^{2}}=19$.
Simplifying the equation, we get
$\left( {{a}^{2}}+4a+3 \right)-{{a}^{2}}=19 \\
\Rightarrow {{a}^{2}}+4a+3-{{a}^{2}}=4a+3=19 \\
\Rightarrow 4a=19-3=16 \\
\therefore a=\dfrac{16}{4}=4 \\ $
Therefore, the length of a side of the present square garden is 4 metres.
Note: We can see the enlargement of the sides increases the area of the square to the area of the rectangle. The formula for the area in both cases is the multiplication of the consecutive sides. In the case of squares, the sides are equal and that’s why the area is the square of the side length.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What was the Metternich system and how did it provide class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE