
What is the magnitude of magnetic dipole moment for a wire of length of (in m) carrying current (in Ampere) that is bent in the form of a circle?
A.
B.
C.
D.
Answer
490.8k+ views
Hint
Magnetic dipole moment is generally calculated for electric current loops. It is given as the product of the area encapsulated by the loop and the total electric current flowing through the loop.
where is the magnetic dipole moment, is the current and is the area encompassed by the loop.
Complete step by step answer
The magnetic dipole moment is used to represent the magnetic strength of any object that produces a magnetic field. In the given question, we are asked to find the dipole moment for a wire with the following general properties:
Length of the wire =
Current through the wire =
Since the wire is bent like a circle, it forms a loop of radius R with the area given as:
As is not explicitly specified in the question, we need to substitute it with the given quantity (i.e. ). For this, we know that the circumference of a circle is given by:
This value should be equal to the length of the wire.
Hence,
[Solving for R] [Eq. 1]
Putting these values in the formula of magnetic dipole moment, we get:
Substituting the value of from [Eq. 1] gives us:
After cancelling and multiplication, we get:
The answer is option (A).
Note
From this exercise, we learn that the magnetic dipole moment for a generic loop is given by . The result can directly be used for any other similar problems. The magnetic moment is a vector quantity. Hence, the right hand rule should be used to determine the direction of the moment.
Magnetic dipole moment is generally calculated for electric current loops. It is given as the product of the area encapsulated by the loop and the total electric current flowing through the loop.
where
Complete step by step answer
The magnetic dipole moment is used to represent the magnetic strength of any object that produces a magnetic field. In the given question, we are asked to find the dipole moment for a wire with the following general properties:
Length of the wire =
Current through the wire =
Since the wire is bent like a circle, it forms a loop of radius R with the area given as:
As
This value should be equal to the length of the wire.
Hence,
Putting these values in the formula of magnetic dipole moment, we get:
Substituting the value of
After cancelling and multiplication, we get:
Note
From this exercise, we learn that the magnetic dipole moment for a generic loop is given by
Latest Vedantu courses for you
Grade 8 | CBSE | SCHOOL | English
Vedantu 8 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹45,300 per year
Recently Updated Pages
Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Science: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
