Answer
Verified
459k+ views
Hint
Magnetic dipole moment is generally calculated for electric current loops. It is given as the product of the area encapsulated by the loop and the total electric current flowing through the loop.
$\Rightarrow M = I \times A $
where $ M $ is the magnetic dipole moment, $ I $ is the current and $ A $ is the area encompassed by the loop.
Complete step by step answer
The magnetic dipole moment is used to represent the magnetic strength of any object that produces a magnetic field. In the given question, we are asked to find the dipole moment for a wire with the following general properties:
Length of the wire = $ L $
Current through the wire = $ I $
Since the wire is bent like a circle, it forms a loop of radius R with the area given as:
$\Rightarrow A = \pi {R^2} $
As $ R $ is not explicitly specified in the question, we need to substitute it with the given quantity (i.e. $ L $ ). For this, we know that the circumference of a circle is given by:
$\Rightarrow C = 2\pi R $
This value should be equal to the length of the wire.
Hence,
$\Rightarrow L = 2\pi R $
$\Rightarrow R = \dfrac{L}{{2\pi }} $ [Solving for R] [Eq. 1]
Putting these values in the formula of magnetic dipole moment, we get:
$\Rightarrow M = I \times A $
$\Rightarrow M = I \times \pi {R^2} $
Substituting the value of $ R $ from [Eq. 1] gives us:
$\Rightarrow M = I \times \pi {\left( {\dfrac{L}{{2\pi }}} \right)^2} $
$\Rightarrow M = \dfrac{{I \times \pi \times {L^2}}}{{4{\pi ^2}}} $
After cancelling and multiplication, we get:
$\Rightarrow M = \dfrac{{I{L^2}}}{{4\pi }} $
$ \therefore $ The answer is option (A).
Note
From this exercise, we learn that the magnetic dipole moment for a generic loop is given by $ M = \dfrac{{I{L^2}}}{{4\pi }} $ . The result can directly be used for any other similar problems. The magnetic moment is a vector quantity. Hence, the right hand rule should be used to determine the direction of the moment.
Magnetic dipole moment is generally calculated for electric current loops. It is given as the product of the area encapsulated by the loop and the total electric current flowing through the loop.
$\Rightarrow M = I \times A $
where $ M $ is the magnetic dipole moment, $ I $ is the current and $ A $ is the area encompassed by the loop.
Complete step by step answer
The magnetic dipole moment is used to represent the magnetic strength of any object that produces a magnetic field. In the given question, we are asked to find the dipole moment for a wire with the following general properties:
Length of the wire = $ L $
Current through the wire = $ I $
Since the wire is bent like a circle, it forms a loop of radius R with the area given as:
$\Rightarrow A = \pi {R^2} $
As $ R $ is not explicitly specified in the question, we need to substitute it with the given quantity (i.e. $ L $ ). For this, we know that the circumference of a circle is given by:
$\Rightarrow C = 2\pi R $
This value should be equal to the length of the wire.
Hence,
$\Rightarrow L = 2\pi R $
$\Rightarrow R = \dfrac{L}{{2\pi }} $ [Solving for R] [Eq. 1]
Putting these values in the formula of magnetic dipole moment, we get:
$\Rightarrow M = I \times A $
$\Rightarrow M = I \times \pi {R^2} $
Substituting the value of $ R $ from [Eq. 1] gives us:
$\Rightarrow M = I \times \pi {\left( {\dfrac{L}{{2\pi }}} \right)^2} $
$\Rightarrow M = \dfrac{{I \times \pi \times {L^2}}}{{4{\pi ^2}}} $
After cancelling and multiplication, we get:
$\Rightarrow M = \dfrac{{I{L^2}}}{{4\pi }} $
$ \therefore $ The answer is option (A).
Note
From this exercise, we learn that the magnetic dipole moment for a generic loop is given by $ M = \dfrac{{I{L^2}}}{{4\pi }} $ . The result can directly be used for any other similar problems. The magnetic moment is a vector quantity. Hence, the right hand rule should be used to determine the direction of the moment.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE