
What is the magnitude of the centripetal acceleration of an object on Earth’s equator owing to the rotation of Earth?
Answer
426.6k+ views
Hint: To solve this question, we could use the formula of centripetal acceleration which is square of velocity divided by radius of the circle in which the object revolves. But here we need to note that we have not been provided with the value of velocity of the object, hence we need to find that first.
Complete answer:
First let us calculate the velocity of the object experienced by it due to the rotation of the Earth when it is placed on the Earth’s equator. The velocity of the object can be found out by the following formula:
\[v=\dfrac{2\pi R}{T}\]
Here $R$ is the radius of the circle in which the object is revolving, i.e., the radius of the Earth which is $R=6.37\times {{10}^{6}}m$ because the object is placed on the equator of the Earth.
And $T$ is the time taken by Earth for a complete rotation which is:
$\begin{align}
& T=24\times 60\times 60 \\
& \Rightarrow T=86400\text{ s} \\
\end{align}$
On substituting the values, in the equation, we get the following equation:
\[\begin{align}
& v=\dfrac{2\pi \times 6.37\times {{10}^{6}}}{86400} \\
& \Rightarrow v=463\text{ m}{{\text{s}}^{-1}} \\
\end{align}\]
Now, let us calculate the centripetal acceleration. The formula for centripetal acceleration is:
${{a}_{c}}=\dfrac{{{v}^{2}}}{R}$
On substituting the values in the equation, we get the following equation:
$\begin{align}
& {{a}_{c}}=\dfrac{{{\left( 463 \right)}^{2}}}{6.37\times {{10}^{6}}} \\
& \therefore {{a}_{c}}=0.034\text{ m}{{\text{s}}^{-2}} \\
\end{align}$
Thus, the centripetal acceleration of an object on Earth’s equator owing to the rotation of Earth is $0.034\text{ m}{{\text{s}}^{-2}}$.
Note:
Centripetal acceleration can be defined as the acceleration that an object experiences which is directed towards the center of the circle in which the object is moving. Here, we must take care that all the units used in the solution are of S.I units otherwise we may conclude to wrong answers.
Complete answer:
First let us calculate the velocity of the object experienced by it due to the rotation of the Earth when it is placed on the Earth’s equator. The velocity of the object can be found out by the following formula:
\[v=\dfrac{2\pi R}{T}\]
Here $R$ is the radius of the circle in which the object is revolving, i.e., the radius of the Earth which is $R=6.37\times {{10}^{6}}m$ because the object is placed on the equator of the Earth.
And $T$ is the time taken by Earth for a complete rotation which is:
$\begin{align}
& T=24\times 60\times 60 \\
& \Rightarrow T=86400\text{ s} \\
\end{align}$
On substituting the values, in the equation, we get the following equation:
\[\begin{align}
& v=\dfrac{2\pi \times 6.37\times {{10}^{6}}}{86400} \\
& \Rightarrow v=463\text{ m}{{\text{s}}^{-1}} \\
\end{align}\]
Now, let us calculate the centripetal acceleration. The formula for centripetal acceleration is:
${{a}_{c}}=\dfrac{{{v}^{2}}}{R}$
On substituting the values in the equation, we get the following equation:
$\begin{align}
& {{a}_{c}}=\dfrac{{{\left( 463 \right)}^{2}}}{6.37\times {{10}^{6}}} \\
& \therefore {{a}_{c}}=0.034\text{ m}{{\text{s}}^{-2}} \\
\end{align}$
Thus, the centripetal acceleration of an object on Earth’s equator owing to the rotation of Earth is $0.034\text{ m}{{\text{s}}^{-2}}$.
Note:
Centripetal acceleration can be defined as the acceleration that an object experiences which is directed towards the center of the circle in which the object is moving. Here, we must take care that all the units used in the solution are of S.I units otherwise we may conclude to wrong answers.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
