Answer
Verified
385.8k+ views
Hint: A fraction is just a numerical value which denotes the equal parts of a whole (or collection). We may apply the fraction in our daily life. For example, when we slice a guava, it will split into two or four and so on.
Example:$\dfrac{1}{2},\dfrac{1}{4},\dfrac{2}{3}$
Here, the number above the line is usually called the numerator and the number below the line is called the denominator.
Fractions having same denominators are called like fractions and fractions having different denominators are called unlike fractions.
Complete step by step answer:
Let us consider a group of $5$unlike fractions which are listed below.
$1,\dfrac{4}{5},\dfrac{7}{{10}},\dfrac{1}{2}$
$\dfrac{3}{4},\dfrac{5}{6},\dfrac{1}{3}$
$\dfrac{2}{9},\dfrac{5}{6}$
$\dfrac{3}{4},\dfrac{1}{2},\dfrac{2}{6},\dfrac{3}{9}$
$\dfrac{1}{2},\dfrac{3}{6},\dfrac{5}{9}$
When we are asked to convert unlike fractions into like fractions, we need to find the LCM for the denominators of unlike fractions and then we have to adjust the fractions to the LCM.
i) LCM of $1,5,10,2$ is $10$
Now, we need to adjust the numerator of the fractions to the LCM$10$.
Consider the fraction$\dfrac{1}{1}$ .
When we multiply the numerator by$10$, we get the required fraction (i.e.)$\dfrac{{10}}{{10}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{{10}}{{10}},\dfrac{8}{{10}},\dfrac{7}{{10}},\dfrac{5}{{10}}$
ii) LCM of $4,6,3$ is $12$
Now, we need to adjust the numerator of the fractions to the LCM$12$.
Consider the fraction$\dfrac{3}{4}$ .
When we multiply the numerator by$3$, we get the required fraction (i.e.)$\dfrac{9}{{12}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{9}{{12}},\dfrac{{10}}{{12}},\dfrac{4}{{12}}$
iii) LCM of $9,6$ is $18$
Now, we need to adjust the numerator of the fractions to the LCM$18$.
Consider the fraction$\dfrac{2}{9}$ .
When we multiply the numerator by$2$, we get the required fraction (i.e.)$\dfrac{4}{{18}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{4}{{18}},\dfrac{{15}}{{18}}$
iv) LCM of $4,2,9,6$ is $36$
Now, we need to adjust the numerator of the fractions to the LCM$36$.
Consider the fraction$\dfrac{3}{4}$ .
When we multiply the numerator by$9$, we get the required fraction (i.e.)$\dfrac{{27}}{{36}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{{27}}{{36}},\dfrac{{13}}{{36}},\dfrac{{12}}{{36}},\dfrac{{12}}{{36}}$
v) LCM of $2,6,9$ is $18$
Now, we need to adjust the numerator of the fractions to the LCM$18$.
Consider the fraction$\dfrac{1}{2}$ .
When we multiply the numerator by$9$, we get the required fraction (i.e.)$\dfrac{9}{{18}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{9}{{18}},\dfrac{6}{{18}},\dfrac{{10}}{{18}}$
Note: Fractions are classified into many types. Among them, the important types of fraction are as follows.
Proper fraction: It is a fraction in which the numerator is less than the denominator.
Example:$\dfrac{4}{5}$
Improper fraction: It is a fraction in which the numerator is more than or equal to the denominator.
Example:$\dfrac{7}{4},\dfrac{3}{3}$
Mixed fraction: It is a fraction containing both the integral part and a proper fraction.
Example:$5\dfrac{1}{4}$
Like fractions: Fractions contain the same denominators.
Example:$\dfrac{7}{4},\dfrac{3}{4}$
Unlike fractions: Fractions contain different denominators.
Example:$\dfrac{7}{4},\dfrac{3}{3}$
Example:$\dfrac{1}{2},\dfrac{1}{4},\dfrac{2}{3}$
Here, the number above the line is usually called the numerator and the number below the line is called the denominator.
Fractions having same denominators are called like fractions and fractions having different denominators are called unlike fractions.
Complete step by step answer:
Let us consider a group of $5$unlike fractions which are listed below.
$1,\dfrac{4}{5},\dfrac{7}{{10}},\dfrac{1}{2}$
$\dfrac{3}{4},\dfrac{5}{6},\dfrac{1}{3}$
$\dfrac{2}{9},\dfrac{5}{6}$
$\dfrac{3}{4},\dfrac{1}{2},\dfrac{2}{6},\dfrac{3}{9}$
$\dfrac{1}{2},\dfrac{3}{6},\dfrac{5}{9}$
When we are asked to convert unlike fractions into like fractions, we need to find the LCM for the denominators of unlike fractions and then we have to adjust the fractions to the LCM.
i) LCM of $1,5,10,2$ is $10$
Now, we need to adjust the numerator of the fractions to the LCM$10$.
Consider the fraction$\dfrac{1}{1}$ .
When we multiply the numerator by$10$, we get the required fraction (i.e.)$\dfrac{{10}}{{10}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{{10}}{{10}},\dfrac{8}{{10}},\dfrac{7}{{10}},\dfrac{5}{{10}}$
ii) LCM of $4,6,3$ is $12$
Now, we need to adjust the numerator of the fractions to the LCM$12$.
Consider the fraction$\dfrac{3}{4}$ .
When we multiply the numerator by$3$, we get the required fraction (i.e.)$\dfrac{9}{{12}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{9}{{12}},\dfrac{{10}}{{12}},\dfrac{4}{{12}}$
iii) LCM of $9,6$ is $18$
Now, we need to adjust the numerator of the fractions to the LCM$18$.
Consider the fraction$\dfrac{2}{9}$ .
When we multiply the numerator by$2$, we get the required fraction (i.e.)$\dfrac{4}{{18}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{4}{{18}},\dfrac{{15}}{{18}}$
iv) LCM of $4,2,9,6$ is $36$
Now, we need to adjust the numerator of the fractions to the LCM$36$.
Consider the fraction$\dfrac{3}{4}$ .
When we multiply the numerator by$9$, we get the required fraction (i.e.)$\dfrac{{27}}{{36}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{{27}}{{36}},\dfrac{{13}}{{36}},\dfrac{{12}}{{36}},\dfrac{{12}}{{36}}$
v) LCM of $2,6,9$ is $18$
Now, we need to adjust the numerator of the fractions to the LCM$18$.
Consider the fraction$\dfrac{1}{2}$ .
When we multiply the numerator by$9$, we get the required fraction (i.e.)$\dfrac{9}{{18}}$
Similarly, when we do the same, we will get the like fractions as given below.
$\dfrac{9}{{18}},\dfrac{6}{{18}},\dfrac{{10}}{{18}}$
Note: Fractions are classified into many types. Among them, the important types of fraction are as follows.
Proper fraction: It is a fraction in which the numerator is less than the denominator.
Example:$\dfrac{4}{5}$
Improper fraction: It is a fraction in which the numerator is more than or equal to the denominator.
Example:$\dfrac{7}{4},\dfrac{3}{3}$
Mixed fraction: It is a fraction containing both the integral part and a proper fraction.
Example:$5\dfrac{1}{4}$
Like fractions: Fractions contain the same denominators.
Example:$\dfrac{7}{4},\dfrac{3}{4}$
Unlike fractions: Fractions contain different denominators.
Example:$\dfrac{7}{4},\dfrac{3}{3}$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE