Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

What is the maximum energy of the anti- neutrino?
A. zero
B. Much less than 0.8×106eV
C. Nearly 0.8×106eV
D. much larger than 0.8×106eV

Answer
VerifiedVerified
510k+ views
like imagedislike image
Hint: Using Einstein’s mass energy equation,E=mc2solve the given problem.
Formula used: mnc2=mpc2+mec2+manc2

Complete step-by-step answer:
We can consider the Einstein’s mass- energy relation,
The beta decay is a negative process.
The negative β-decay, np+e10+ν
mnc2=mpc2+mec2+manc2
manc2=(mnmpme)c2
 = (1.00866u - 1.00727 - 0.00055u)c2
 = 0.00084uc2
 = 0.00084×931.5MeV
manc2=0.78×106eV
Which is less than 0.8×106eV.

From the above equation we found the value for the maximum energy of the anti-neutrino.
Therefore, answer is (B) Much less than 0.8×106eV.

Additional information:
There are three types of the decay process
Alpha decay
Beta decay
Gamma decay
The process of emission of an electron or positron from a radioactive nucleus is called the βdecay.
When a nucleus emits a βparticle (electron or positron), the mass number A of the nucleus does not change but its atomic number Z increases by 1. Therefore, βdecaycan be represented as:
XZAYZ+1A+e10+Q
where Q represents the maximum kinetic energy with which the β- particles are emitted.Q=(mxmy)c2

According to the above relation all -particles must be emitted with the same kinetic energy. But the experiments showed that only a few -particles are emitted with the maximum kinetic energy. A large number of - particles are emitted with a small value of the kinetic energy. Thus, there is an apparent break or violation of the law of conservation of mass-energy. To overcome this difficulty Pauli proposed a theory called the “neutrino hypothesis”.
According to this hypothesis, there must exist another particle called “neutrino” to account for the missing energy and momentum. Therefore, in a negative -decay, a neutron is transformed into a proton, electron, and an anti-neutrino. That is, Similarly, in a positive -decay, a proton is transferred into a neutron, positron, and a neutrino. That is,
Neutrinos are neutral particles with very small mass compared to the electron. They have only weak interactions with other particles. Therefore, they are very difficult to detect.

Note: By learning the atomic mass unit of all the fundamental particles the above problem can be solved.
mnc2=mpc2+mec2+manc2
manc2=(mnmpme)c2
 = (1.00866u - 1.00727 - 0.00055u)c2
 = 0.00084uc2
 = 0.00084×931.5MeV
manc2=0.78×106eV