Answer
Verified
396.9k+ views
Hint:Critical angle is defined as an angle of incidence from denser to rarer medium at which the refracted ray moves along the interference of two mediums. Critical frequency, more than this frequency will lead the signals to penetrate from the ionosphere and less than this reflects in the same medium.
Complete step by step answer:
Snell’s law defines the relation between the angle of incidence and angle of refraction whenever the wave may be light or signal passes through an interference boundary of two mediums.
\[{\mu _1}\sin i = {\mu _2}\sin r\]
Given in the question: Maximum usable frequency in F-region is $x$, Critical frequency is \[60\] MHz and angle of incidence is \[{70^ \circ }\].
\[{\mu _2} = \sqrt {1 - \dfrac{{81.45 \times N}}{{{\nu ^2}}}} \]
\[\nu \] is the maximum usable frequency
\[{\text{N}}\] is the electron density
For maximum usable frequency angle of refraction becomes \[r = {90^ \circ }\] and angle of incidence is 1. Substituting in Snell’s Law:
\[1\sin i = {\mu _2}\sin {90^ \circ }\]…….(1)
The incidence angle is critical angle
\[{i_c} = {\sin ^{ - 1}}{\mu _2}\]
Squaring equation (1)
\[\sin {i_c}^2 = {\mu _2}^2\]
$\Rightarrow \sin {i_c}^2 = 1 - \dfrac{{81.45 \times N}}{{{\nu ^2}}} \\
\Rightarrow 1 - \sin {i_c}^2 = \dfrac{{81.45 \times N}}{{{\nu ^2}}} \\
\Rightarrow \nu = \sqrt {81.45 \times N} \times \sec {i_c} \\$
We know that critical frequency is \[{\nu _c} = \sqrt {81.45 \times N} \]
Maximum usable frequency can be written in the form:
\[\nu = {\nu _c} \times \sec {i_c}\]
Substituting the values in the equation:
\[x = 60 \times {10^6} \times \sec {70^ \circ }\]
\[\Rightarrow \sec {70^ \circ } \approx 2.92\]
\[\therefore x = 175.43\,MHz \approx 175\,MHz\]
Thus, the maximum usable frequency in the F-region is \[175\,MHz\].
Hence, the correct answer is option C.
Note: Maximum usable frequency, when the frequency of signal increases it has more changes to penetrate from the ionosphere and travel into outer space. It is the frequency when a radio communication starts to lose the signal.
Complete step by step answer:
Snell’s law defines the relation between the angle of incidence and angle of refraction whenever the wave may be light or signal passes through an interference boundary of two mediums.
\[{\mu _1}\sin i = {\mu _2}\sin r\]
Given in the question: Maximum usable frequency in F-region is $x$, Critical frequency is \[60\] MHz and angle of incidence is \[{70^ \circ }\].
\[{\mu _2} = \sqrt {1 - \dfrac{{81.45 \times N}}{{{\nu ^2}}}} \]
\[\nu \] is the maximum usable frequency
\[{\text{N}}\] is the electron density
For maximum usable frequency angle of refraction becomes \[r = {90^ \circ }\] and angle of incidence is 1. Substituting in Snell’s Law:
\[1\sin i = {\mu _2}\sin {90^ \circ }\]…….(1)
The incidence angle is critical angle
\[{i_c} = {\sin ^{ - 1}}{\mu _2}\]
Squaring equation (1)
\[\sin {i_c}^2 = {\mu _2}^2\]
$\Rightarrow \sin {i_c}^2 = 1 - \dfrac{{81.45 \times N}}{{{\nu ^2}}} \\
\Rightarrow 1 - \sin {i_c}^2 = \dfrac{{81.45 \times N}}{{{\nu ^2}}} \\
\Rightarrow \nu = \sqrt {81.45 \times N} \times \sec {i_c} \\$
We know that critical frequency is \[{\nu _c} = \sqrt {81.45 \times N} \]
Maximum usable frequency can be written in the form:
\[\nu = {\nu _c} \times \sec {i_c}\]
Substituting the values in the equation:
\[x = 60 \times {10^6} \times \sec {70^ \circ }\]
\[\Rightarrow \sec {70^ \circ } \approx 2.92\]
\[\therefore x = 175.43\,MHz \approx 175\,MHz\]
Thus, the maximum usable frequency in the F-region is \[175\,MHz\].
Hence, the correct answer is option C.
Note: Maximum usable frequency, when the frequency of signal increases it has more changes to penetrate from the ionosphere and travel into outer space. It is the frequency when a radio communication starts to lose the signal.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE