
Maximum value of sinx-cosx is equal to
\[\begin{align}
& A.\sqrt{2} \\
& B.1 \\
& C.0 \\
& D.\text{None of these} \\
\end{align}\]
Answer
524.4k+ views
Hint: In this question, we need to find the maximum value of sinx-cosx. Suppose $f\left( x \right)=\sin x-\cos x$ for this, we will use a second derivative test. We will first find the derivative of a given function i.e. f'(x). Then we will put f'(x) = 0 and find the value of x. Then we will again find the derivative of the function i.e. f''(x). Using value of x found before in f''(x). We will check if the point gives maximum value or minimum value. If f''(x) < 0 then x gives maximum value and if f''(x) > 0 then x gives minimum value. Using the value of x which gives maximum value we will find maximum f(x). We will use following properties,
$\begin{align}
& \left( i \right)\dfrac{d}{dx}\sin x=\cos x \\
& \left( ii \right)\dfrac{d}{dx}\cos x=-\sin x \\
& \left( iii \right)\tan x=\dfrac{\sin x}{\cos x} \\
& \left( iv \right)\sin \left( \pi -\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\text{ and }\cos \left( \pi -\dfrac{\pi }{4} \right)=-\cos \dfrac{\pi }{4} \\
\end{align}$
Complete step by step answer:
Here we are given the function as sinx-cosx. Let us suppose it to be equal to f(x).
We get $f'\left( x \right)=\dfrac{d}{dx}\left( \sin x-\cos x \right)$.
Now let us find the derivative of a given function.
Differentiating both sides w.r.t x, we get $f'\left( x \right)=\dfrac{d}{dx}\left( \sin x-\cos x \right)$.
We know that $\dfrac{d}{dx}\sin x=\cos x\text{ and }\dfrac{d}{dx}\cos x=-\sin x$ so we get, $f'\left( x \right)=\cos x-\left( -\sin x \right)\Rightarrow f'\left( x \right)=\cos x+\sin x\cdots \cdots \cdots \left( 2 \right)$.
Now again let us find the derivative.
Differentiating w.r.t x we get $f''\left( x \right)=\dfrac{d}{dx}\left( \cos x+\sin x \right)$.
Again using $\dfrac{d}{dx}\sin x=\cos x\text{ and }\dfrac{d}{dx}\cos x=-\sin x$ we get, $f''\left( x \right)=-\sin x+\cos x\cdots \cdots \cdots \left( 3 \right)$.
Now let us equate equation (2) to zero to find the value of x, we get $f'\left( x \right)=0\Rightarrow \cos x+\sin x=0\Rightarrow \cos x=-\sin x$.
Dividing by cos x on both sides we get, $1=\dfrac{-\sin x}{\cos x}$.
Using the property of $\tan \theta $ i.e. $\tan x=\dfrac{\sin x}{\cos x}$ we get, $\tan x=-1$.
We know that $\tan \theta $ is negative in the second quadrant and $\tan \dfrac{\pi }{4}=1$. So in the second quadrant we will have $\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \dfrac{\pi }{4}=-1$.
Hence $\tan \dfrac{3\pi }{4}=-1$.
Therefore, $x=\dfrac{3\pi }{4}$.
Let us check if it gives maximum value or not.
Putting $x=\dfrac{3\pi }{4}$ in (3) we get, $f''\left( \dfrac{3\pi }{4} \right)=-\sin \dfrac{3\pi }{4}+\cos \dfrac{3\pi }{4}$.
It can be written as $-\sin \left( \pi -\dfrac{\pi }{4} \right)+\cos \left( \pi -\dfrac{\pi }{4} \right)$.
We know $\sin \left( \pi -\theta \right)=\sin \theta \text{ and }\cos \left( \pi -\theta \right)=-\cos \theta $ so we get,
$f''\left( \dfrac{3\pi }{4} \right)=-\sin \dfrac{\pi }{4}-\cos \dfrac{\pi }{4}$.
Since $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}=\cos \dfrac{\pi }{4}$ so we get, $f''\left( \dfrac{3\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\Rightarrow f''\left( \dfrac{3\pi }{4} \right)=-\dfrac{2}{\sqrt{2}}\text{ }<\text{ }0$.
So $x=\dfrac{3\pi }{4}$ gives the maximum value of f(x).
Putting $x=\dfrac{3\pi }{4}$ in f(x) we get $f\left( \dfrac{3\pi }{4} \right)=\sin \dfrac{3\pi }{4}-\cos \dfrac{3\pi }{4}$.
As evaluated earlier $\sin \dfrac{3\pi }{4}=\dfrac{1}{\sqrt{2}}\text{ and }\cos \dfrac{3\pi }{4}=-\dfrac{1}{\sqrt{2}}$ so we get,
$f\left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}}-\left( -\dfrac{1}{\sqrt{2}} \right)\Rightarrow \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}$.
Splitting 2 into $\sqrt{2}\times \sqrt{2}$ we get,
$f\left( \dfrac{3\pi }{4} \right)=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}=\sqrt{2}$.
Hence the maximum value of sinx-cosx is $\sqrt{2}$.
So, the correct answer is “Option A”.
Note: Students should know the values of $\tan \dfrac{\pi }{4},\sin \dfrac{\pi }{4},\cos \dfrac{\pi }{4}$ from the trigonometric ratio table. Note that there are many more values of $\theta $ for which $\tan \theta =-1$. They can be found by formula $\tan \theta =\tan \alpha \Rightarrow \theta =n\pi \pm \alpha ,n=0,1,2,\ldots \ldots $.
$\begin{align}
& \left( i \right)\dfrac{d}{dx}\sin x=\cos x \\
& \left( ii \right)\dfrac{d}{dx}\cos x=-\sin x \\
& \left( iii \right)\tan x=\dfrac{\sin x}{\cos x} \\
& \left( iv \right)\sin \left( \pi -\dfrac{\pi }{4} \right)=\sin \dfrac{\pi }{4}\text{ and }\cos \left( \pi -\dfrac{\pi }{4} \right)=-\cos \dfrac{\pi }{4} \\
\end{align}$
Complete step by step answer:
Here we are given the function as sinx-cosx. Let us suppose it to be equal to f(x).
We get $f'\left( x \right)=\dfrac{d}{dx}\left( \sin x-\cos x \right)$.
Now let us find the derivative of a given function.
Differentiating both sides w.r.t x, we get $f'\left( x \right)=\dfrac{d}{dx}\left( \sin x-\cos x \right)$.
We know that $\dfrac{d}{dx}\sin x=\cos x\text{ and }\dfrac{d}{dx}\cos x=-\sin x$ so we get, $f'\left( x \right)=\cos x-\left( -\sin x \right)\Rightarrow f'\left( x \right)=\cos x+\sin x\cdots \cdots \cdots \left( 2 \right)$.
Now again let us find the derivative.
Differentiating w.r.t x we get $f''\left( x \right)=\dfrac{d}{dx}\left( \cos x+\sin x \right)$.
Again using $\dfrac{d}{dx}\sin x=\cos x\text{ and }\dfrac{d}{dx}\cos x=-\sin x$ we get, $f''\left( x \right)=-\sin x+\cos x\cdots \cdots \cdots \left( 3 \right)$.
Now let us equate equation (2) to zero to find the value of x, we get $f'\left( x \right)=0\Rightarrow \cos x+\sin x=0\Rightarrow \cos x=-\sin x$.
Dividing by cos x on both sides we get, $1=\dfrac{-\sin x}{\cos x}$.
Using the property of $\tan \theta $ i.e. $\tan x=\dfrac{\sin x}{\cos x}$ we get, $\tan x=-1$.
We know that $\tan \theta $ is negative in the second quadrant and $\tan \dfrac{\pi }{4}=1$. So in the second quadrant we will have $\tan \left( \pi -\dfrac{\pi }{4} \right)=-\tan \dfrac{\pi }{4}=-1$.
Hence $\tan \dfrac{3\pi }{4}=-1$.
Therefore, $x=\dfrac{3\pi }{4}$.
Let us check if it gives maximum value or not.
Putting $x=\dfrac{3\pi }{4}$ in (3) we get, $f''\left( \dfrac{3\pi }{4} \right)=-\sin \dfrac{3\pi }{4}+\cos \dfrac{3\pi }{4}$.
It can be written as $-\sin \left( \pi -\dfrac{\pi }{4} \right)+\cos \left( \pi -\dfrac{\pi }{4} \right)$.
We know $\sin \left( \pi -\theta \right)=\sin \theta \text{ and }\cos \left( \pi -\theta \right)=-\cos \theta $ so we get,
$f''\left( \dfrac{3\pi }{4} \right)=-\sin \dfrac{\pi }{4}-\cos \dfrac{\pi }{4}$.
Since $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}=\cos \dfrac{\pi }{4}$ so we get, $f''\left( \dfrac{3\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\Rightarrow f''\left( \dfrac{3\pi }{4} \right)=-\dfrac{2}{\sqrt{2}}\text{ }<\text{ }0$.
So $x=\dfrac{3\pi }{4}$ gives the maximum value of f(x).
Putting $x=\dfrac{3\pi }{4}$ in f(x) we get $f\left( \dfrac{3\pi }{4} \right)=\sin \dfrac{3\pi }{4}-\cos \dfrac{3\pi }{4}$.
As evaluated earlier $\sin \dfrac{3\pi }{4}=\dfrac{1}{\sqrt{2}}\text{ and }\cos \dfrac{3\pi }{4}=-\dfrac{1}{\sqrt{2}}$ so we get,
$f\left( \dfrac{3\pi }{4} \right)=\dfrac{1}{\sqrt{2}}-\left( -\dfrac{1}{\sqrt{2}} \right)\Rightarrow \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}$.
Splitting 2 into $\sqrt{2}\times \sqrt{2}$ we get,
$f\left( \dfrac{3\pi }{4} \right)=\dfrac{\sqrt{2}\times \sqrt{2}}{\sqrt{2}}=\sqrt{2}$.
Hence the maximum value of sinx-cosx is $\sqrt{2}$.
So, the correct answer is “Option A”.
Note: Students should know the values of $\tan \dfrac{\pi }{4},\sin \dfrac{\pi }{4},\cos \dfrac{\pi }{4}$ from the trigonometric ratio table. Note that there are many more values of $\theta $ for which $\tan \theta =-1$. They can be found by formula $\tan \theta =\tan \alpha \Rightarrow \theta =n\pi \pm \alpha ,n=0,1,2,\ldots \ldots $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

