
Mobilities of electrons and holes in a sample of intrinsic germanium at room temperature are $0.36{{m}^{2}}{{V}^{-1}}{{s}^{-1}}$ and $0.17{{m}^{2}}{{V}^{-1}}{{s}^{-1}}$. The electron and hole densities are each equal to $2.5\times {{10}^{19}}{{m}^{3}}$. The electrical conductivity of germanium is
$\begin{align}
& \left( A \right)4.24S{{m}^{-1}} \\
& \left( B \right)2.12S{{m}^{-1}} \\
& \left( C \right)1.09S{{m}^{-1}} \\
& \left( D \right)0.47S{{m}^{-1}} \\
\end{align}$
Answer
468.6k+ views
Hint: An intrinsic can be described as a pure type of semiconductor.Given the mobilities of electrons and holes. Also given that the electron and hole densities are each equal. Thus the electrical conductivity is the product of the algebraic sum of the product of mobility and density of electron and holes and the magnitude of charge. Thus by substituting the values we will get the electrical conductivity of germanium.
Complete step-by-step solution
Given that,
Mobilities of electrons, ${{\mu }_{e}}=0.36{{m}^{2}}{{V}^{-1}}{{s}^{-1}}$
Mobilities of holes, ${{\mu }_{h}}=0.17{{m}^{2}}{{V}^{-1}}{{s}^{-1}}$
Also given that the electron and hole densities are each equal to $2.5\times {{10}^{19}}{{m}^{3}}$.Hence,
As we know conductivity,
$\sigma =e\left( {{\mu }_{e}}{{n}_{e}}+{{\mu }_{n}}{{n}_{n}} \right)$
$\Rightarrow \sigma =1.6\times {{10}^{-19}}\left[ 0.36\times 2.5\times {{10}^{19}}+0.17\times 2.5\times {{10}^{19}} \right]$
$\therefore \sigma =2.12S{{m}^{-1}}$
So the electrical conductivities of germanium is $2.12S{{m}^{-1}}$.
Additional information: Semiconductor materials at 0K have basically the same structure as insulators-a filled valence band separated from an empty conduction band by a bandgap containing no allowed energy states. This process is called the doping of semiconductors. Thus there are two types of semiconductors, n-type (mostly electrons) and p-type (mostly holes). Generally, pentavalent impurities are the dopants in an extrinsic semiconductor.
Note: An intrinsic can be described as a pure type of semiconductor. In an intrinsic semiconductor, the holes and electrons are generally equal. Trivalent impurities are the dopant in an intrinsic semiconductor. The electrical conductivity generally depends on the temperature of the material. In such material, there is no change in carriers at 0K, since the valence band is filled with electrons and the conduction band is empty. At higher temperatures, electron-hole pairs are excited thermally across the bandgap to the conduction band.
Complete step-by-step solution
Given that,
Mobilities of electrons, ${{\mu }_{e}}=0.36{{m}^{2}}{{V}^{-1}}{{s}^{-1}}$
Mobilities of holes, ${{\mu }_{h}}=0.17{{m}^{2}}{{V}^{-1}}{{s}^{-1}}$
Also given that the electron and hole densities are each equal to $2.5\times {{10}^{19}}{{m}^{3}}$.Hence,
As we know conductivity,
$\sigma =e\left( {{\mu }_{e}}{{n}_{e}}+{{\mu }_{n}}{{n}_{n}} \right)$
$\Rightarrow \sigma =1.6\times {{10}^{-19}}\left[ 0.36\times 2.5\times {{10}^{19}}+0.17\times 2.5\times {{10}^{19}} \right]$
$\therefore \sigma =2.12S{{m}^{-1}}$
So the electrical conductivities of germanium is $2.12S{{m}^{-1}}$.
Additional information: Semiconductor materials at 0K have basically the same structure as insulators-a filled valence band separated from an empty conduction band by a bandgap containing no allowed energy states. This process is called the doping of semiconductors. Thus there are two types of semiconductors, n-type (mostly electrons) and p-type (mostly holes). Generally, pentavalent impurities are the dopants in an extrinsic semiconductor.
Note: An intrinsic can be described as a pure type of semiconductor. In an intrinsic semiconductor, the holes and electrons are generally equal. Trivalent impurities are the dopant in an intrinsic semiconductor. The electrical conductivity generally depends on the temperature of the material. In such material, there is no change in carriers at 0K, since the valence band is filled with electrons and the conduction band is empty. At higher temperatures, electron-hole pairs are excited thermally across the bandgap to the conduction band.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Types of lever in which effort is in between fulcrum class 12 physics CBSE

A two input XOR Gate produces a high output only when class 12 physics CBSE

Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
