Moment of inertia of solid sphere about its diameter is I. If that sphere is recast into 8 identical small spheres, then the moment of inertia of a small sphere about its diameter is:
(A) $\dfrac{I}{8}$
(B) $\dfrac{I}{{16}}$
(C) $\dfrac{I}{{24}}$
(D) $\dfrac{I}{{32}}$
Answer
Verified
408.4k+ views
Hint: Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$.As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\]. As the material of both the materials is the same thus density remains the same.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Recently Updated Pages
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Hinge Force - Important Concepts and Tips for JEE
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
Find the current in wire AB class 11 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)