
Moment of inertia of solid sphere about its diameter is I. If that sphere is recast into 8 identical small spheres, then the moment of inertia of a small sphere about its diameter is:
(A) $\dfrac{I}{8}$
(B) $\dfrac{I}{{16}}$
(C) $\dfrac{I}{{24}}$
(D) $\dfrac{I}{{32}}$
Answer
418.3k+ views
Hint: Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$.As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\]. As the material of both the materials is the same thus density remains the same.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
