Answer
Verified
430.5k+ views
Hint:Let us assume the \[500\] and \[100\] denomination notes as \[x\] and \[y\] after assuming the total number of notes and their monetary value equivalence we form two equations that is product of total money amounting from \[500\] denomination added to that of the denomination amounting for \[100\] rupees. After that we will equate the equations and then subtract to find the value of \[x\] and then the
value of \[y\].
Complete step by step solution:
As given in the question, the value of \[500\] notes and \[100\] notes total to be \[150\] number of notes. The amount withdrawn from the ATM is valued at \[Rs.25000\].
Hence, let us assume that the total number of \[500\] notes are \[x\]. And assume that the total number of \[100\] notes are \[y\]. Therefore, the sum of \[500\] denomination and \[100\] denomination notes are to written as:
\[x\text{ }+\text{ }y\text{ }=\text{ }150\]
The total amount of \[500\] denomination amounts to Rs \[500x\] and the total amount of \[100\] denomination amounts to Rs. \[100y\].
Hence adding the total amount will form an Equation of \[500x+100y=25000\]
Subtracting the Equation based on the two situations, we get the value of \[y\] as:
\[\Rightarrow \begin{matrix}
x\text{ }+\text{ }y\text{ }=\text{ }150\text{ } \\
500x+100y=25000 \\
\end{matrix}\]
Multiplying the base equation with the above equation we get the two equation as:
\[\Rightarrow \begin{matrix}
500x+\text{500}y=75000\text{ } \\
500x+100y=25000\text{ } \\
\end{matrix}\]
\[\Rightarrow \text{400}y=50000\]
\[\Rightarrow y=\dfrac{50000}{400}\]
\[\Rightarrow y=125\]
And after getting the value of \[y\] we put the value in the equation to get the value of \[x\] by placing the value of \[y\] in the equation \[x\text{ }+\text{ }y\text{ }=\text{ }150\], we get the value of \[x\] as:
\[\Rightarrow x\text{ }+\text{ }125\text{ }=\text{ }150\]
\[\Rightarrow x=25\]
Therefore, the total number of \[500\] denominations is given as and the number of \100\ denomination is given as \[25\] and \[125\] respectively.
Note: Another method to find the number of notes is that we assume that the denomination of \[500\] notes as \[x\] and the number of \[100\] denominations as \[150-x\]. Hence, the equation for the total sum and the number of denomination is:
\[\Rightarrow 500x+100\left( 150-x \right)=Rs.25000\]
\[\Rightarrow 500x+15000-100x=Rs.25000\]
\[\Rightarrow 400x=Rs.\left( 25000-15000 \right)\]
\[\Rightarrow x=\dfrac{Rs.\left( 25000-15000 \right)}{400}\]
\[\Rightarrow x=\dfrac{Rs.10000}{400}\]
\[\Rightarrow x=25\]
Therefore, the number of \[500\] notes as \[25\] and \[100\] notes as \[125\].
value of \[y\].
Complete step by step solution:
As given in the question, the value of \[500\] notes and \[100\] notes total to be \[150\] number of notes. The amount withdrawn from the ATM is valued at \[Rs.25000\].
Hence, let us assume that the total number of \[500\] notes are \[x\]. And assume that the total number of \[100\] notes are \[y\]. Therefore, the sum of \[500\] denomination and \[100\] denomination notes are to written as:
\[x\text{ }+\text{ }y\text{ }=\text{ }150\]
The total amount of \[500\] denomination amounts to Rs \[500x\] and the total amount of \[100\] denomination amounts to Rs. \[100y\].
Hence adding the total amount will form an Equation of \[500x+100y=25000\]
Subtracting the Equation based on the two situations, we get the value of \[y\] as:
\[\Rightarrow \begin{matrix}
x\text{ }+\text{ }y\text{ }=\text{ }150\text{ } \\
500x+100y=25000 \\
\end{matrix}\]
Multiplying the base equation with the above equation we get the two equation as:
\[\Rightarrow \begin{matrix}
500x+\text{500}y=75000\text{ } \\
500x+100y=25000\text{ } \\
\end{matrix}\]
\[\Rightarrow \text{400}y=50000\]
\[\Rightarrow y=\dfrac{50000}{400}\]
\[\Rightarrow y=125\]
And after getting the value of \[y\] we put the value in the equation to get the value of \[x\] by placing the value of \[y\] in the equation \[x\text{ }+\text{ }y\text{ }=\text{ }150\], we get the value of \[x\] as:
\[\Rightarrow x\text{ }+\text{ }125\text{ }=\text{ }150\]
\[\Rightarrow x=25\]
Therefore, the total number of \[500\] denominations is given as and the number of \100\ denomination is given as \[25\] and \[125\] respectively.
Note: Another method to find the number of notes is that we assume that the denomination of \[500\] notes as \[x\] and the number of \[100\] denominations as \[150-x\]. Hence, the equation for the total sum and the number of denomination is:
\[\Rightarrow 500x+100\left( 150-x \right)=Rs.25000\]
\[\Rightarrow 500x+15000-100x=Rs.25000\]
\[\Rightarrow 400x=Rs.\left( 25000-15000 \right)\]
\[\Rightarrow x=\dfrac{Rs.\left( 25000-15000 \right)}{400}\]
\[\Rightarrow x=\dfrac{Rs.10000}{400}\]
\[\Rightarrow x=25\]
Therefore, the number of \[500\] notes as \[25\] and \[100\] notes as \[125\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE