Mr. Kapoor withdrew \[Rs.25000\] from an ATM. If he receives 150 notes in denomination of Rs.\[500\] and Rs.\[100\]. Find the number of notes in each denomination
Answer
Verified
442.8k+ views
Hint:Let us assume the \[500\] and \[100\] denomination notes as \[x\] and \[y\] after assuming the total number of notes and their monetary value equivalence we form two equations that is product of total money amounting from \[500\] denomination added to that of the denomination amounting for \[100\] rupees. After that we will equate the equations and then subtract to find the value of \[x\] and then the
value of \[y\].
Complete step by step solution:
As given in the question, the value of \[500\] notes and \[100\] notes total to be \[150\] number of notes. The amount withdrawn from the ATM is valued at \[Rs.25000\].
Hence, let us assume that the total number of \[500\] notes are \[x\]. And assume that the total number of \[100\] notes are \[y\]. Therefore, the sum of \[500\] denomination and \[100\] denomination notes are to written as:
\[x\text{ }+\text{ }y\text{ }=\text{ }150\]
The total amount of \[500\] denomination amounts to Rs \[500x\] and the total amount of \[100\] denomination amounts to Rs. \[100y\].
Hence adding the total amount will form an Equation of \[500x+100y=25000\]
Subtracting the Equation based on the two situations, we get the value of \[y\] as:
\[\Rightarrow \begin{matrix}
x\text{ }+\text{ }y\text{ }=\text{ }150\text{ } \\
500x+100y=25000 \\
\end{matrix}\]
Multiplying the base equation with the above equation we get the two equation as:
\[\Rightarrow \begin{matrix}
500x+\text{500}y=75000\text{ } \\
500x+100y=25000\text{ } \\
\end{matrix}\]
\[\Rightarrow \text{400}y=50000\]
\[\Rightarrow y=\dfrac{50000}{400}\]
\[\Rightarrow y=125\]
And after getting the value of \[y\] we put the value in the equation to get the value of \[x\] by placing the value of \[y\] in the equation \[x\text{ }+\text{ }y\text{ }=\text{ }150\], we get the value of \[x\] as:
\[\Rightarrow x\text{ }+\text{ }125\text{ }=\text{ }150\]
\[\Rightarrow x=25\]
Therefore, the total number of \[500\] denominations is given as and the number of \100\ denomination is given as \[25\] and \[125\] respectively.
Note: Another method to find the number of notes is that we assume that the denomination of \[500\] notes as \[x\] and the number of \[100\] denominations as \[150-x\]. Hence, the equation for the total sum and the number of denomination is:
\[\Rightarrow 500x+100\left( 150-x \right)=Rs.25000\]
\[\Rightarrow 500x+15000-100x=Rs.25000\]
\[\Rightarrow 400x=Rs.\left( 25000-15000 \right)\]
\[\Rightarrow x=\dfrac{Rs.\left( 25000-15000 \right)}{400}\]
\[\Rightarrow x=\dfrac{Rs.10000}{400}\]
\[\Rightarrow x=25\]
Therefore, the number of \[500\] notes as \[25\] and \[100\] notes as \[125\].
value of \[y\].
Complete step by step solution:
As given in the question, the value of \[500\] notes and \[100\] notes total to be \[150\] number of notes. The amount withdrawn from the ATM is valued at \[Rs.25000\].
Hence, let us assume that the total number of \[500\] notes are \[x\]. And assume that the total number of \[100\] notes are \[y\]. Therefore, the sum of \[500\] denomination and \[100\] denomination notes are to written as:
\[x\text{ }+\text{ }y\text{ }=\text{ }150\]
The total amount of \[500\] denomination amounts to Rs \[500x\] and the total amount of \[100\] denomination amounts to Rs. \[100y\].
Hence adding the total amount will form an Equation of \[500x+100y=25000\]
Subtracting the Equation based on the two situations, we get the value of \[y\] as:
\[\Rightarrow \begin{matrix}
x\text{ }+\text{ }y\text{ }=\text{ }150\text{ } \\
500x+100y=25000 \\
\end{matrix}\]
Multiplying the base equation with the above equation we get the two equation as:
\[\Rightarrow \begin{matrix}
500x+\text{500}y=75000\text{ } \\
500x+100y=25000\text{ } \\
\end{matrix}\]
\[\Rightarrow \text{400}y=50000\]
\[\Rightarrow y=\dfrac{50000}{400}\]
\[\Rightarrow y=125\]
And after getting the value of \[y\] we put the value in the equation to get the value of \[x\] by placing the value of \[y\] in the equation \[x\text{ }+\text{ }y\text{ }=\text{ }150\], we get the value of \[x\] as:
\[\Rightarrow x\text{ }+\text{ }125\text{ }=\text{ }150\]
\[\Rightarrow x=25\]
Therefore, the total number of \[500\] denominations is given as and the number of \100\ denomination is given as \[25\] and \[125\] respectively.
Note: Another method to find the number of notes is that we assume that the denomination of \[500\] notes as \[x\] and the number of \[100\] denominations as \[150-x\]. Hence, the equation for the total sum and the number of denomination is:
\[\Rightarrow 500x+100\left( 150-x \right)=Rs.25000\]
\[\Rightarrow 500x+15000-100x=Rs.25000\]
\[\Rightarrow 400x=Rs.\left( 25000-15000 \right)\]
\[\Rightarrow x=\dfrac{Rs.\left( 25000-15000 \right)}{400}\]
\[\Rightarrow x=\dfrac{Rs.10000}{400}\]
\[\Rightarrow x=25\]
Therefore, the number of \[500\] notes as \[25\] and \[100\] notes as \[125\].
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE