Multiply the binomial \[(2x + 5)\] and\[(4x - 3)\].
Answer
Verified
483.3k+ views
Hint:In this question we have to multiply the binomials. The given binomials are \[(2x + 5)\] and \[(4x - 3)\].
We can find the product of two binomial expressions on the form, it can be multiplied by the first term of the first expression with the second expression. Then we will continue the multiplication with the second term.
In general the format of multiplying two polynomial \[(ax + b)(cx + d) = ac{x^2} + (ad + bc)x + bd\]
Complete step-by-step answer:
It is given that the two binomial expression are \[(2x + 5)\] and \[(4x - 3)\]
We have to find the multiplication of \[(2x + 5)\] and \[(4x - 3)\].
In the given expression we can write the form of multiplication, we get
\[(2x + 5) \times (4x - 3)\]
We will multiply the first term of the first expression with the first term of the second expression and again multiply the first term of the first expression with the second term of the second expression. Similarly for the second term of the first expression. That is, multiply the second term of the first expression with the first term of the second expression and then multiply the second term of the first expression with the second term of the second expression.
\[(8{x^2} - 6x + 20x - 15)\]
On simplifying the expression we get,
\[2x(4x - 3) + 5(4x - 3)\]
On simplifying, we can write the expression as the coefficient of ${x^2}$ and $x$ we get another equation,
\[8{x^2} - 6x + 20x - 15\]
Subtracting the coefficients of $x$, we get
\[8{x^2} + 14x - 15\]
Hence, the multiplication of two binomial expressions are \[(2x + 5)\] and \[(4x - 3)\] is \[8{x^2} + 14x - 15\].
$\therefore $ The product of two binomial expressions is \[(2x + 5) \times (4x - 3) = 8{x^2} + 14x - 15\]
Note:A polynomial with highest degree two is known as the binomial. \[a{x^2} + bx + c\]is the general form of a binomial where, \[a \ne 0\].
Here, we have two expressions of degree one. Multiplication of two one-degree polynomials gives the binomial as the answer.
We can find the product of two binomial expressions on the form, it can be multiplied by the first term of the first expression with the second expression. Then we will continue the multiplication with the second term.
In general the format of multiplying two polynomial \[(ax + b)(cx + d) = ac{x^2} + (ad + bc)x + bd\]
Complete step-by-step answer:
It is given that the two binomial expression are \[(2x + 5)\] and \[(4x - 3)\]
We have to find the multiplication of \[(2x + 5)\] and \[(4x - 3)\].
In the given expression we can write the form of multiplication, we get
\[(2x + 5) \times (4x - 3)\]
We will multiply the first term of the first expression with the first term of the second expression and again multiply the first term of the first expression with the second term of the second expression. Similarly for the second term of the first expression. That is, multiply the second term of the first expression with the first term of the second expression and then multiply the second term of the first expression with the second term of the second expression.
\[(8{x^2} - 6x + 20x - 15)\]
On simplifying the expression we get,
\[2x(4x - 3) + 5(4x - 3)\]
On simplifying, we can write the expression as the coefficient of ${x^2}$ and $x$ we get another equation,
\[8{x^2} - 6x + 20x - 15\]
Subtracting the coefficients of $x$, we get
\[8{x^2} + 14x - 15\]
Hence, the multiplication of two binomial expressions are \[(2x + 5)\] and \[(4x - 3)\] is \[8{x^2} + 14x - 15\].
$\therefore $ The product of two binomial expressions is \[(2x + 5) \times (4x - 3) = 8{x^2} + 14x - 15\]
Note:A polynomial with highest degree two is known as the binomial. \[a{x^2} + bx + c\]is the general form of a binomial where, \[a \ne 0\].
Here, we have two expressions of degree one. Multiplication of two one-degree polynomials gives the binomial as the answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science