Answer
Verified
459k+ views
Hint: Average atomic mass of an element can be calculated by adding the product of all isotopes with their percentage in which they are present in final form. Average atomic mass basically tells us about the relative natural abundance of that element’s isotopes.
Complete step by step answer: As we know that Boron is a chemical element with atomic number $5$ and electronic configuration $1{s^2}2{s^2}2{p^z}$. It is represented by the symbol $B$. it consists only $0.001$ percent by weight of forth crust. Elemental boron is a metalloid. Industrially, very pure boron is produced with very difficulty because of contamination of carbon or other elements which were removed with difficulty. Boron is used in making borosilicate glass. It is also used in preparation of basic acid. Boron is also used in fertilisers and insecticide. Boron is a useful dopant for such semiconductors as silicon, germanium and silicon carbide.
Now according to the question, suppose the percentage of isotope of \[B\] with atomic mass $10.01$ be $'x'$. This implies that the percentage of other isotopes of $B$ with atomic mass $11.01$ be $'100 - x'$ because in calculating the percentage, the sum is always $100\% $.
$\therefore $ Average atomic mass can be calculated by using the formula
Average atomic mass =$\dfrac{{{\text{mass of one isotope }} \times {\text{ it's percentage value + mass of other isotope }} \times {\text{ it's percentage value}}}}{{100}}$ ………… (i)
Now we have a $2$ isotope of boron with atomic mass be $10.01$ and $11.01$ and respective percentages are $'x'$ and $'100 - x'$. And the average atomic mass given is $10.81$. Putting all values in above equation, we get
$\Rightarrow$ $10.81 = \dfrac{{10.01\left( x \right) + 11.01\left( {100 - x} \right)}}{{100}}$
$\Rightarrow$ $1081 = 10.01x + 1101 - 11.01x$
$\Rightarrow$ $1081 = 1101 - x$
Or $x = 20$
Hence, percentage of isotope with atomic mass $10.01 = 20\% $
And percentage of isotope with atomic mass $11.01 = \left( {100 - 20} \right)\% = 80\% $
Note: The average atomic mass is important in order to know the abundance of the isotopes of a particular element. It is measured in atomic mass units or amu. For heavier elements that have larger isotopic distribution, the average atomic mass plays an important role.
Complete step by step answer: As we know that Boron is a chemical element with atomic number $5$ and electronic configuration $1{s^2}2{s^2}2{p^z}$. It is represented by the symbol $B$. it consists only $0.001$ percent by weight of forth crust. Elemental boron is a metalloid. Industrially, very pure boron is produced with very difficulty because of contamination of carbon or other elements which were removed with difficulty. Boron is used in making borosilicate glass. It is also used in preparation of basic acid. Boron is also used in fertilisers and insecticide. Boron is a useful dopant for such semiconductors as silicon, germanium and silicon carbide.
Now according to the question, suppose the percentage of isotope of \[B\] with atomic mass $10.01$ be $'x'$. This implies that the percentage of other isotopes of $B$ with atomic mass $11.01$ be $'100 - x'$ because in calculating the percentage, the sum is always $100\% $.
$\therefore $ Average atomic mass can be calculated by using the formula
Average atomic mass =$\dfrac{{{\text{mass of one isotope }} \times {\text{ it's percentage value + mass of other isotope }} \times {\text{ it's percentage value}}}}{{100}}$ ………… (i)
Now we have a $2$ isotope of boron with atomic mass be $10.01$ and $11.01$ and respective percentages are $'x'$ and $'100 - x'$. And the average atomic mass given is $10.81$. Putting all values in above equation, we get
$\Rightarrow$ $10.81 = \dfrac{{10.01\left( x \right) + 11.01\left( {100 - x} \right)}}{{100}}$
$\Rightarrow$ $1081 = 10.01x + 1101 - 11.01x$
$\Rightarrow$ $1081 = 1101 - x$
Or $x = 20$
Hence, percentage of isotope with atomic mass $10.01 = 20\% $
And percentage of isotope with atomic mass $11.01 = \left( {100 - 20} \right)\% = 80\% $
Note: The average atomic mass is important in order to know the abundance of the isotopes of a particular element. It is measured in atomic mass units or amu. For heavier elements that have larger isotopic distribution, the average atomic mass plays an important role.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE