What is the nature of bond between B and O in ${{({{C}_{2}}{{H}_{5}})}_{2}}OB{{H}_{3}}$ is:
[A] Covalent
[B] Coordinate covalent
[C] Ionic bond
[D] Banana shaped bond
Answer
Verified
483.3k+ views
Hint: Borane is a Lewis acid therefore it can accept a pair of electrons and ${{({{C}_{2}}{{H}_{5}})}_{2}}O$ is a Lewis base. There will be sharing of electrons between these two atoms but it is not mutual. Such sharing has a particular name which will be the correct answer.
Complete answer: As we know, a covalent bond is a chemical bond which involves sharing of electrons between two atoms which gives rise to a stable balance between the attractive and repulsive forces hence, forms a stable bond which we know as covalent bonding.
However, in a coordinate covalent bond the sharing is only by one atom i.e. one of the atoms will donate its electron density and the other will accept it. There will be no mutual sharing. We generally find this type of bonding in complex compounds where there is a metal-ligand interaction. We even call this a dipolar bond because the involved atoms are of opposite polarity.
We can define ionic bonding as a bonding where there is a complete transfer of electrons as a result of which we get two oppositely charged ions. Due to this type of bonding the electron acceptor species become negatively charged and the donor species becomes positively charged.
Lastly, a banana bond is also a covalent bond but the geometry resembles the shape of a banana. We generally call this type of bond a bent bond.
As we know that $B{{H}_{3}}$ is a Lewis acid i.e. it can accept a pair of nonbonding electrons. So we can say that it will accept the non-bonding electrons present in the ${{({{C}_{2}}{{H}_{5}})}_{2}}O$ group and simultaneously, ${{({{C}_{2}}{{H}_{5}})}_{2}}O$ is a Lewis base, as it has non-bonding electrons to donate.
Therefore, we can say that oxygen will donate a pair of its lone pair to the boron atom which will give rise to a covalent bond. And as the sharing is only by one atom i.e. oxygen therefore, we can say that it forms a coordinate covalent bond which we can represent as-
\[{{({{C}_{2}}{{H}_{5}})}_{2}}O\to B{{H}_{3}}\]
The co-ordinate covalent bond is shown by an arrow.
So, the correct answer is “Option B”.
Note: We should not be confused between coordinate covalent and covalent bond even though they are similar as covalent bonding includes sharing between two atoms. In the given question we have a Lewis acid and a Lewis base, sharing is not possible as one species will donate its electron density and the other accepts it. Therefore, a coordinate covalent bonding is formed between the boron and oxygen atom.
Complete answer: As we know, a covalent bond is a chemical bond which involves sharing of electrons between two atoms which gives rise to a stable balance between the attractive and repulsive forces hence, forms a stable bond which we know as covalent bonding.
However, in a coordinate covalent bond the sharing is only by one atom i.e. one of the atoms will donate its electron density and the other will accept it. There will be no mutual sharing. We generally find this type of bonding in complex compounds where there is a metal-ligand interaction. We even call this a dipolar bond because the involved atoms are of opposite polarity.
We can define ionic bonding as a bonding where there is a complete transfer of electrons as a result of which we get two oppositely charged ions. Due to this type of bonding the electron acceptor species become negatively charged and the donor species becomes positively charged.
Lastly, a banana bond is also a covalent bond but the geometry resembles the shape of a banana. We generally call this type of bond a bent bond.
As we know that $B{{H}_{3}}$ is a Lewis acid i.e. it can accept a pair of nonbonding electrons. So we can say that it will accept the non-bonding electrons present in the ${{({{C}_{2}}{{H}_{5}})}_{2}}O$ group and simultaneously, ${{({{C}_{2}}{{H}_{5}})}_{2}}O$ is a Lewis base, as it has non-bonding electrons to donate.
Therefore, we can say that oxygen will donate a pair of its lone pair to the boron atom which will give rise to a covalent bond. And as the sharing is only by one atom i.e. oxygen therefore, we can say that it forms a coordinate covalent bond which we can represent as-
\[{{({{C}_{2}}{{H}_{5}})}_{2}}O\to B{{H}_{3}}\]
The co-ordinate covalent bond is shown by an arrow.
So, the correct answer is “Option B”.
Note: We should not be confused between coordinate covalent and covalent bond even though they are similar as covalent bonding includes sharing between two atoms. In the given question we have a Lewis acid and a Lewis base, sharing is not possible as one species will donate its electron density and the other accepts it. Therefore, a coordinate covalent bonding is formed between the boron and oxygen atom.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE