Answer
Verified
114.3k+ views
Hint: Non-metal oxides such as sulphur dioxide and nitrogen oxide are responsible for acid rain. Using this application of non-metal oxides, try and determine their nature.
Step-by-Step Solution:
Let us first analyse what non-metallic oxides really are before moving on towards the specifics of this question.
All non-metals form covalent oxides with oxygen, which react with water to form acids or with bases to form salts. Most non-metal oxides are acidic and form oxyacids, which in turn yield hydronium ions (\[{{H}_{3}}{{O}^{+}}\]) in aqueous solution. There are two general statements that describe the behaviour of acidic oxides. First, oxides such as sulphur trioxide (\[S{{O}_{3}}\]) and dinitrogen pentoxide (\[{{N}_{2}}{{O}_{5}}\]), in which the non-metal exhibits one of its common oxidation numbers, are known as acid anhydrides. These oxides react with water to form oxyacids, with no change in the oxidation number of the non-metal; for example,
\[{{N}_{2}}{{O}_{5}}~+\text{ }{{H}_{2}}O\to 2HN{{O}_{3}}\]
The non-metal oxides can be neutralized with a base to form salt and water.
\[Non-Metal\text{ }Oxide\text{ }+\text{ }Base~\to ~Salt\text{ }+\text{ }Water\]
For example,
$\begin{matrix}
S{{O}_{3(g)}}~+\text{ }Ba{{\left( OH \right)}_{2(aq)}}~\to ~BaS{{O}_{4(aq)}}~+\text{ }{{H}_{2}}{{O}_{(l)}} \\
{{P}_{4}}{{O}_{10(s)}}~+\text{ }12\text{ }NaO{{H}_{(aq)}}~\to ~4\text{ }N{{a}_{3}}P{{O}_{4(aq)}}~+\text{ }6\text{ }{{H}_{2}}{{O}_{(l)}} \\
\end{matrix}$
Generally, the more metallic character an element has, the more basic its oxide will be. Likewise, the more non-metallic character an element has, the more acidic its oxide will be. The non-metallic character of an element can be determined by its position on the periodic table:
Therefore, per our analysis, the answer to this question is a) Acidic in nature
Note: Most non-metal oxides are acidic, but not all. For example, carbon monoxide (CO) is not acidic.
The addition of water to a non-metal oxide results in a compound that consists of a non-metal atom surrounded by oxo (=O) and hydroxy (-OH) groups. For example,
\[S{{O}_{3\left( l \right)}}\text{ }+\text{ }{{H}_{2}}{{O}_{\left( l \right)}}\text{ }\to \text{ }{{H}_{2}}S{{O}_{4\left( l \right)}}\]
Step-by-Step Solution:
Let us first analyse what non-metallic oxides really are before moving on towards the specifics of this question.
All non-metals form covalent oxides with oxygen, which react with water to form acids or with bases to form salts. Most non-metal oxides are acidic and form oxyacids, which in turn yield hydronium ions (\[{{H}_{3}}{{O}^{+}}\]) in aqueous solution. There are two general statements that describe the behaviour of acidic oxides. First, oxides such as sulphur trioxide (\[S{{O}_{3}}\]) and dinitrogen pentoxide (\[{{N}_{2}}{{O}_{5}}\]), in which the non-metal exhibits one of its common oxidation numbers, are known as acid anhydrides. These oxides react with water to form oxyacids, with no change in the oxidation number of the non-metal; for example,
\[{{N}_{2}}{{O}_{5}}~+\text{ }{{H}_{2}}O\to 2HN{{O}_{3}}\]
The non-metal oxides can be neutralized with a base to form salt and water.
\[Non-Metal\text{ }Oxide\text{ }+\text{ }Base~\to ~Salt\text{ }+\text{ }Water\]
For example,
$\begin{matrix}
S{{O}_{3(g)}}~+\text{ }Ba{{\left( OH \right)}_{2(aq)}}~\to ~BaS{{O}_{4(aq)}}~+\text{ }{{H}_{2}}{{O}_{(l)}} \\
{{P}_{4}}{{O}_{10(s)}}~+\text{ }12\text{ }NaO{{H}_{(aq)}}~\to ~4\text{ }N{{a}_{3}}P{{O}_{4(aq)}}~+\text{ }6\text{ }{{H}_{2}}{{O}_{(l)}} \\
\end{matrix}$
Generally, the more metallic character an element has, the more basic its oxide will be. Likewise, the more non-metallic character an element has, the more acidic its oxide will be. The non-metallic character of an element can be determined by its position on the periodic table:
Therefore, per our analysis, the answer to this question is a) Acidic in nature
Note: Most non-metal oxides are acidic, but not all. For example, carbon monoxide (CO) is not acidic.
The addition of water to a non-metal oxide results in a compound that consists of a non-metal atom surrounded by oxo (=O) and hydroxy (-OH) groups. For example,
\[S{{O}_{3\left( l \right)}}\text{ }+\text{ }{{H}_{2}}{{O}_{\left( l \right)}}\text{ }\to \text{ }{{H}_{2}}S{{O}_{4\left( l \right)}}\]
Recently Updated Pages
JEE Main 2023 (January 29th Shift 2) Chemistry Question Paper with Answer Key
Degree of Dissociation Important Concepts and Tips for JEE
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key
Clemmensen and Wolff Kishner Reduction - Important Concepts and Tips for JEE
JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Total number of lone pair electrons in I3 ion is A class 11 chemistry JEE_Main
Other Pages
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Current Loop as Magnetic Dipole and Its Derivation for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE