
Normality of 0.3 M phosphorus acid (${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$) is:
(A) 0.5
(B) 0.6
(C) 0.9
(D) 0.1
Answer
137.1k+ views
Hint: Normality is a term used for indicating the concentration of a solution. Here, you can use the formula ${{Normality = Molarity \times n-factor}}$ for finding the normality from the given data.
Complete step by step answer: Here, in the question, the molarity of the solution is given. So, we can use a simple formula for normality. For using the formula:${{Normality = Molarity \times n-factor}}$
We need to know what n-factor is. N-factor is the acidity of a base or the basicity of an acid.
The acid given is Phosphorus acid whose n-factor is 2. Phosphorus acid has a basicity of 2. This is because ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$ can donate two ${\text{O}}{{\text{H}}^{\text{ - }}}$ ions or it contains 2 replaceable ${{\text{H}}^{\text{ + }}}$ions.
So, by substituting the above values in the formula, we get:
${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$
So, the normality of the given phosphorus acid is 0.6 N.
Additional Information:
Normality is mainly used as a measure of reactive species in a solution and during titration reactions or particularly in situations involving acid-base chemistry.
As per the standard definition of normality, it is described as the number of gram or mole equivalents of solute present in one litre of a solution. When we say equivalent, it is the number of moles of reactive units in a compound.
Note: When you are taking the values for n-factor, it is the basicity or the number of replaceable ${{\text{H}}^{\text{ + }}}$ ions in the acid. In case of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$, you may think that there is 3 replaceable ${{\text{H}}^{\text{ + }}}$. But when you see the structure of phosphorus acid, there are only 2 replaceable ${{\text{H}}^{\text{ + }}}$.
Complete step by step answer: Here, in the question, the molarity of the solution is given. So, we can use a simple formula for normality. For using the formula:${{Normality = Molarity \times n-factor}}$
We need to know what n-factor is. N-factor is the acidity of a base or the basicity of an acid.
The acid given is Phosphorus acid whose n-factor is 2. Phosphorus acid has a basicity of 2. This is because ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$ can donate two ${\text{O}}{{\text{H}}^{\text{ - }}}$ ions or it contains 2 replaceable ${{\text{H}}^{\text{ + }}}$ions.
So, by substituting the above values in the formula, we get:
${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$
So, the normality of the given phosphorus acid is 0.6 N.
Additional Information:
Normality is mainly used as a measure of reactive species in a solution and during titration reactions or particularly in situations involving acid-base chemistry.
As per the standard definition of normality, it is described as the number of gram or mole equivalents of solute present in one litre of a solution. When we say equivalent, it is the number of moles of reactive units in a compound.
Note: When you are taking the values for n-factor, it is the basicity or the number of replaceable ${{\text{H}}^{\text{ + }}}$ ions in the acid. In case of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$, you may think that there is 3 replaceable ${{\text{H}}^{\text{ + }}}$. But when you see the structure of phosphorus acid, there are only 2 replaceable ${{\text{H}}^{\text{ + }}}$.
Recently Updated Pages
COM of Semicircular Ring Important Concepts and Tips for JEE

Geostationary Satellites and Geosynchronous Satellites for JEE

Current Loop as Magnetic Dipole Important Concepts for JEE

Electromagnetic Waves Chapter for JEE Main Physics

Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Electromagnetic radiation with maximum wavelength is class 11 chemistry JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

The correct order of electron affinity is A F Cl Br class 11 chemistry JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Types of Solutions

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
