Answer
Verified
460.5k+ views
Hint: Determine the n factor by calculating the decrease in the oxidation number of manganese. Then use the formula \[{\text{Normality = Molarity }} \times {\text{ n factor}}\] to convert molarity into normality.
Complete step by step answer:
The decrease in the oxidation number is the reduction. In a redox reaction, an oxidizing agent oxidizes other substances. A species, whose oxidation number decreases during the reaction, is known as an oxidizing agent. An oxidizing agent itself undergoes reduction. For an oxidizing agent, the n factor gives the decrease in the oxidation number.
For manganese, determine the n factor from the decrease in the oxidation number.
The oxidation number of manganese in \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is +7.
The oxidation number of manganese in \[{\text{M}}{{\text{n}}^{2 + }}\] is +2.
When \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is reduced to \[{\text{M}}{{\text{n}}^{2 + }}\] ions, the oxidation number of manganese decreases from +7 to +5. The decrease in the oxidation number of manganese is 5. Hence, the n factor is 5.
The molarity of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.025 M}}\].
Use the formula \[{\text{Normality = Molarity }} \times {\text{ n factor}}\] to convert molarity into normality.
\[{\text{Normality = Molarity }} \times {\text{ n factor}} \\
{\text{Normality = 0}}{\text{.025 M }} \times {\text{ 5}} \\
{\text{Normality = 0}}{\text{.125 N}} \\\]
Hence, the normality of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.125 N}}\].
Hence, the option A )\[{\text{0}}{\text{.125 N}}\] is the correct option.
Additional information: n factor can also be defined as the ratio of the normality to the molarity.
Note: For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the number of electrons gained. For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the decrease in the oxidation number.
The number of gram equivalents is the ratio of the mass of oxidising agents to its equivalent weight. Normality is the number of gram equivalents present in one litre of solution.
Complete step by step answer:
The decrease in the oxidation number is the reduction. In a redox reaction, an oxidizing agent oxidizes other substances. A species, whose oxidation number decreases during the reaction, is known as an oxidizing agent. An oxidizing agent itself undergoes reduction. For an oxidizing agent, the n factor gives the decrease in the oxidation number.
For manganese, determine the n factor from the decrease in the oxidation number.
The oxidation number of manganese in \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is +7.
The oxidation number of manganese in \[{\text{M}}{{\text{n}}^{2 + }}\] is +2.
When \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is reduced to \[{\text{M}}{{\text{n}}^{2 + }}\] ions, the oxidation number of manganese decreases from +7 to +5. The decrease in the oxidation number of manganese is 5. Hence, the n factor is 5.
The molarity of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.025 M}}\].
Use the formula \[{\text{Normality = Molarity }} \times {\text{ n factor}}\] to convert molarity into normality.
\[{\text{Normality = Molarity }} \times {\text{ n factor}} \\
{\text{Normality = 0}}{\text{.025 M }} \times {\text{ 5}} \\
{\text{Normality = 0}}{\text{.125 N}} \\\]
Hence, the normality of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.125 N}}\].
Hence, the option A )\[{\text{0}}{\text{.125 N}}\] is the correct option.
Additional information: n factor can also be defined as the ratio of the normality to the molarity.
Note: For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the number of electrons gained. For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the decrease in the oxidation number.
The number of gram equivalents is the ratio of the mass of oxidising agents to its equivalent weight. Normality is the number of gram equivalents present in one litre of solution.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE